知乎回答1.
深度学习和传统推荐方法(协同过滤)中的embedding
1-1embedding的应用之一:通过计算用户和物品的Embedding相似度,Embedding可以直接作为推荐系统的召回层或者召回方法之一。
对embedding在召回方面的应用浓缩总结一下就是:通过计算用户和1-2物品或物品和物品的Embedding相似度,来缩小推荐候选库的范围。
1-3除此之外,通过总结目前主流的ctr预估模型比如wide&deep,deepFM,PNN和DCN等等可以发现,embedding还有一个非常普遍的应用就是实现高维稀疏特征向量向低维稠密特征向量的转换,通俗来讲就是把离散特征经过独热编码后的稀疏向量表达转化成稠密的特征向量表达。
1-4或者从另一个角度看,embedding本身就是对事物的多维度特征表示,因此在ctr预估模型中,训练好的embedding可以当作输入深度学习模型的特征,比如FNN利用FM预训练好的embedding来当作模型的输入,然后通过特征交叉操作比如多层感知机得到这些embedding的交叉特征。
1-5解释基于矩阵分解的协同过滤中的embedding
1-6解释基于自编码器的协同过滤中的embedding
作者:DeePR
链接:https://www.zhihu.com/question/38002635/answer/1045883713
来源:知乎
知乎回答2.
怎么形象理解embedding这个概念? - 「已注销」的回答 - 知乎
https://www.zhihu.com/question/38002635/answer/1047924668
一是为了针对某个目的更好的优化计算过程,二是很多结构并不是欧几里得空间,比如图,处理这些数据更加需要embedding
回答3
embedding 可以理解为比如降维,或者说把一些复杂难以表达的特征用相对来说可以用数学表达或者更易计算的形式来表达的一种映射。