Control~Kalman filter

本文深入探讨卡尔曼滤波与PID算法在自平衡小车中的应用,揭示了这两种控制算法的工作原理及其局限性。通过具体实例,如直立平衡车的姿态测量,详细解释了卡尔曼滤波算法的实现过程,同时对比分析了PID算法的特点。文章还提供了代码示例和调试截图,帮助读者更好地理解和应用这些算法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

常用控制算法(包括PID和卡尔曼滤波等)各有什么天然的局限乃至缺陷               回答都专业而又接地气

 

自平衡小车的探讨:卡尔曼滤波与PID算法                        之前觉得平衡车难做,完全是因为对原理不懂,不懂原理就没法指导自己的行为。

直立平衡车的姿态测量卡尔曼滤波算法原理与应用(附代码及调试截图)

 

kalman跟踪的实现                       

卡尔曼滤波是一种递归的估计,即只要获知上一时刻状态的估计值以及当前状态的观测值就可以计算出当前状态的估计值,因此不需要记录观测或者估计的历史信息。

 

学习OpenCV2——卡尔曼滤波(KalmanFilter)详解          使用状态空间方程表示与推导

理解Kalman滤波的使用                 之前转过的博客,再看一遍有新的发现。

 

      上面图片最后一段,解答了之前   状态空间方程 x(k)=Ax(k-1)+Bu+w  为什么x(k)还受Ax(k-1)影响,之前一直理解的这一项和Bu都是系统输入,就很不理解。    

       现在看来,直接把A看作单位矩阵,即系数1,就很好理解了,变成   x(k)=x(k-1)+Bu+w,当前状态等于上一时刻状态加一个增量,这与微积分中 “万物都是在change,都是以增量的形式在发展变化”的思想恰好吻合。

Understanding the Basis of the Kalman Filter Via a Simple and Intuitive Derivation [Lecture Notes] 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值