视觉里程计只计算相邻帧的运动,进行局部估计,这会不可避免的出现累积漂移,这是因为每次估计两个图像间的运动时都有一定的误差,经过相邻帧多次传递,前面的误差会逐渐累积,轨迹漂移(drift)的越来越厉害。
不管是轮式里程计、IMU、视觉里程计,都是通过积分来计算里程的,都会有累计误差。
里面提到扫地机器人用单目相机来修正轮子打滑时的定位,因为打滑的时候轮子也在转但是位置并没变,所以从这个角度来看,把IMU和轮式里程计结合还是有点作用的,IMU也是可以在轮子打滑的情况下起到补充作用的。不过目前来看,车也没打滑现象,感觉加上作用不大,等到车子出现打滑之类现象的时候再加就可以,比如做漂移之类的动作的时候。
GNSS / INS组合导航系统扩展卡尔曼滤波与因子图优化的比较(CS RO) EKF、粒子滤波、因子图优化 都是可以通用的
卡尔曼滤波中的状态方程 就是车的运动学方程,车的位置是由后轮轮速和车把转向角共同决定的,状态方程描述了车的位置随控制输入u的变化,这里的u就是实际的车速和转向角