卡尔曼滤波——车定位(GPS与车运动方程)

博客对VSLAM进行科普,指出视觉里程计会出现累积漂移,轮式、IMU、视觉里程计都有累计误差。还提到扫地机器人用单目相机修正轮子打滑定位,IMU和轮式里程计结合有一定作用。此外,比较了GNSS/INS组合导航系统扩展卡尔曼滤波与因子图优化,介绍了卡尔曼滤波状态方程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

VSLAM小科普

视觉里程计只计算相邻帧的运动,进行局部估计,这会不可避免的出现累积漂移,这是因为每次估计两个图像间的运动时都有一定的误差,经过相邻帧多次传递,前面的误差会逐渐累积,轨迹漂移(drift)的越来越厉害。

不管是轮式里程计、IMU、视觉里程计,都是通过积分来计算里程的,都会有累计误差。

里面提到扫地机器人用单目相机来修正轮子打滑时的定位,因为打滑的时候轮子也在转但是位置并没变,所以从这个角度来看,把IMU和轮式里程计结合还是有点作用的,IMU也是可以在轮子打滑的情况下起到补充作用的。不过目前来看,车也没打滑现象,感觉加上作用不大,等到车子出现打滑之类现象的时候再加就可以,比如做漂移之类的动作的时候。

GNSS / INS组合导航系统扩展卡尔曼滤波与因子图优化的比较(CS RO)           EKF、粒子滤波、因子图优化 都是可以通用的 

卡尔曼滤波中的状态方程 就是车的运动学方程,车的位置是由后轮轮速和车把转向角共同决定的,状态方程描述了车的位置随控制输入u的变化,这里的u就是实际的车速和转向角

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值