推荐算法
1 推荐模型构建流程
Data(数据)->Features(特征)->ML Algorithm(选择算法训练模型)->Prediction Output(预测输出)
-
数据清洗/数据处理
-
数据来源
-
显性数据
-
Rating 打分
-
Comments 评论/评价
-
-
隐形数据
-
Order history 历史订单
-
Cart events 加购物车
-
Page views 页面浏览
-
Click-thru 点击
-
Search log 搜索记录
-
-
-
数据量/数据能否满足要求
-
-
特征工程
-
从数据中筛选特征
-
一个给定的商品,可能被拥有类似品味或需求的用户购买
-
使用用户行为数据描述商品
-
-
-
用数据表示特征
-
将所有用户行为合并在一起 ,形成一个user-item 矩阵
-
-
选择合适的算法
-
协同过滤
-
基于内容
-
-
产生推荐结果
-
对推荐结果进行评估(评估方法后面章节介绍),评估通过后上线
-
2 最经典的推荐算法:协同过滤推荐算法(Collaborative Filtering)
算法思想:物以类聚,人以群分
基本的协同过滤推荐算法基于以下假设:
-
“跟你喜好相似的人喜欢的东西你也很有可能喜欢” :基于用户的协同过滤推荐(User-based CF)
-
“跟你喜欢的东西相似的东西你也很有可能喜欢 ”:基于物品的协同过滤推荐(Item-based CF)
实现协同过滤推荐有以下几个步骤:
-
找出最相似的人或物品:TOP-N相似的人或物品
通过计算两两的相似度来进行排序,即可找出TOP-N相似的人或物品
-
根据相似的人或物品产生推荐结果
利用TOP-N结果生成初始推荐结果,然后过滤掉用户已经有过记录的物品或明确表示不感兴趣的物品
以下是一个简单的示例,数据集相当于一个用户对物品的购买记录表:打勾表示用户对物品的有购买记录
-
关于相似度计算这里先用一个简单的思想:如有两个同学X和Y,X同学爱好[足球、篮球、乒乓球],Y同学爱好[网球、足球、篮球、羽毛球],可见他们的共同爱好有2个,那么他们的相似度可以用:2/3 * 2/4 = 1/3 ≈ 0.33 来表示。
User-Based CF
Item-Based CF
3 相似度计算(Similarity Calculation)
相似度的计算方法
欧氏距离, 是一个欧式空间下度量距离的方法. 两个物体, 都在同一个空间下表示为两个点, 假如叫做p,q, 分别都是n个坐标, 那么欧式距离就是衡量这两个点之间的距离. 欧氏距离不适用于布尔向量之间
欧氏距离的值是一个非负数, 最大值正无穷, 通常计算相似度的结果希望是[-1,1]或[0,1]之间,一般可以使用
如下转化公式: