deepspeed的并行模式介绍笔记

1.整体框架在这里插入图片描述

2.并行模式

1.数据并行DDP

在这里插入图片描述
数据切分以后,分开单张卡训练得到参数,然后综合在单卡计算。
要点:前向计算和反向计算两步骤走并汇总。

1.前向计算

需要留一块主卡一定空间用于综合。

2.反向传播

利用前向传播的汇总参数得到各个卡对应数据的损失函数,从而得到梯度的值,分发到每一块卡上,然后每块卡分别做梯度反向推理,然后把梯度结果汇总到gpu1.
在这里插入图片描述

2.模型并行

1.层间并行pipeline(梯度切分):

计算每个sample的一层后就推送到下一块卡。
层间并行

2.层内并行:

层内多头注意力机制参数多卡分开计算。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小王子cc

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值