构建决策树模型并绘制生成的决策树(附Python代码)
在机器学习领域,决策树是一种常见的分类算法,它可以处理离散型和连续型的特征,并且比较适合处理具有“局部规律”的数据。在本文中,我们将使用Python编程语言来构建一个决策树模型,并使用export_graphviz模块绘制出生成的决策树。
首先,我们需要准备一些数据来训练我们的模型。这里我们使用sklearn库中自带的iris数据集,这是一个经典的分类问题,包含三个类别的鸢尾花数据,每个类别有50个样本,每个样本由4个特征组成(花瓣长度、花瓣宽度、花萼长度、花萼宽度)。下面是数据加载和预处理的代码:
from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
iris = load_iris()
X_train