构建决策树模型并绘制生成的决策树(附Python代码)

457 篇文章 ¥119.90 ¥299.90
386 篇文章 ¥179.90 ¥299.90
本文介绍了如何使用Python的scikit-learn库构建决策树模型,并通过export_graphviz模块可视化鸢尾花数据集的决策树。从数据加载、模型训练到决策树的绘制,详细展示了决策树分类算法的过程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

构建决策树模型并绘制生成的决策树(附Python代码)

在机器学习领域,决策树是一种常见的分类算法,它可以处理离散型和连续型的特征,并且比较适合处理具有“局部规律”的数据。在本文中,我们将使用Python编程语言来构建一个决策树模型,并使用export_graphviz模块绘制出生成的决策树。

首先,我们需要准备一些数据来训练我们的模型。这里我们使用sklearn库中自带的iris数据集,这是一个经典的分类问题,包含三个类别的鸢尾花数据,每个类别有50个样本,每个样本由4个特征组成(花瓣长度、花瓣宽度、花萼长度、花萼宽度)。下面是数据加载和预处理的代码:

from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
 
iris = load_iris()
X_train
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

NoABug

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值