
scikit-learn
文章平均质量分 91
cy^2
我一点都不烦
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
scikit-learn:AdaBoost参数解释
在sklearn中,AdaBoost既可以实现分类也可以实现回归,可以使用如下两个类来调用它们:sklearn.ensemble.AdaBoostClassifier(base_estimator=None, *, n_estimators=50, learning_rate=1.0, algorithm=‘SAMME.R’, random_state=None)sklearn.ensemble.AdaBoostRegressor(base_estimator=None, *, n_esti原创 2022-05-26 21:24:11 · 1498 阅读 · 0 评论 -
scikit-learn:逻辑回归参数解释
1、Logistic regression 简单介绍 又称对数几率回归;首先,逻辑回归处理是分类问题,对于二分类则是将线性函数的输出结果通过sigmoid函数映射到0/1标签,即越靠近1则判别为正例的概率越大,并最终通过最大似然估计优化求解。逻辑回归:模型构建、估计参数求解、结果解读笔记2、 逻辑回归评估器中的参数解释LogisticRegression?参数解释penalty正则化项dual是否求解对偶问题*tol迭代停止条件:两轮迭代损失值差值小于t原创 2022-05-15 17:51:02 · 1074 阅读 · 0 评论