- 博客(3)
- 收藏
- 关注
原创 【任务3】 决策树算法梳理
1、信息论基础若利用一个特征进行分类的结果与随机分类的结果没有很大差异,则称这个特征是没有分类能力的。特征选择的准则是信息增益或信息增益比。1)熵在信息论与概率统计中,熵表示随机变量不确定性的度量。设X是一个取有限个值得离散随机变量,其概率分布为:则随机变量X的熵定义为:其中n是分类的数目。熵越大,随机变量的不确定性就越大。2)条件熵H(Y|X)表示在已知随机变...
2019-08-11 15:48:25
736
原创 【Task1】 线性回归算法梳理
1、机器学习的一些概念 有监督:是一个机器学习中的方法,可以由训练资料中学到或建立一个模式( learning model),并依此模式推测新的实例。训练资料是由输入物件(通常是向量)和预期输出所组成。函数的输出可以是一个连续的值(称为回归分析),或是预测一个分类标签(称作分类)。一个监督式学习者的任务在观察完一些训练范例(输入和预期输出)后,去预测这个函数对任何可能出现的输入的值的输出。监督...
2019-08-09 21:23:08
321
原创 【Task2】 逻辑回归算法梳理
1、逻辑回归与线性回归的联系与区别(1)分类与回归:回归模型就是预测一个连续变量(如降水量,价格等)。在分类问题中,预测属于某类的概率,可以看成回归问题。这可以说是使用回归算法的分类方法。(2)输出:直接使用线性回归的输出作为概率是有问题的,因为其值有可能小于0或者大于1,这是不符合实际情况的。逻辑回归的输出正是[0,1]区间。见下图,(3)参数估计方法:线性回归中使用的是最小化平...
2019-08-09 20:52:14
433
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人