01-基本介绍
昇思MindSpore介绍
昇思MindSpore是一个全场景深度学习框架,旨在实现易开发、高效执行、全场景统一部署三大目标。
总体架构:
02-快速入门
通过MindSpore的API实现简单的深度学习模型
1、导入minspore库
import mindspore
from mindspore import nn
from mindspore.dataset import vision, transforms
from mindspore.dataset import MnistDataset
2、通过download下载数据集,使用以下命令进行安装
pip install download
然后使用一下命令行下载数据集
# Download data from open datasets
from download import download
url = "https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/" \
"notebook/datasets/MNIST_Data.zip"
path = download(url, "./", kind="zip", replace=True)
执行结果为:
数据集目录为:
获取数据对象,并打印数据集中包含的数据列名,用于dataset的预处理。
train_dataset = MnistDataset('MNIST_Data/train')
test_dataset = MnistDataset('MNIST_Data/test')
print(train_dataset.get_col_names())
得知其中含有image和label两个标签。
MindSpore的dataset使用数据处理流水线(Data Processing Pipeline),需指定map、batch、shuffle等操作。这里我们使用map对图像数据及标签进行变换处理,然后将处理好的数据集打包为大小为64的batch。
可使用create_tuple_iterator 或create_dict_iterator对数据集进行迭代访问,查看数据和标签的shape和datatype。
def datapipe(dataset, batch_size):
image_transforms = [
vision.Rescale(1.0 / 255.0, 0),
vision.Normalize(mean=(0.1307,), std=(0.3081,)),
vision.HWC2CHW()
]
label_transform = transforms.TypeCast(mindspore.int32)
dataset = dataset.map(image_transforms, 'image')
dataset = dataset.map(label_transform, 'label')
dataset = dataset.batch(batch_size)
return dataset
# Map vision transforms and batch dataset
train_dataset = datapipe(train_dataset, 64)
test_dataset = datapipe(test_dataset, 64)
for image, label in test_dataset.create_tuple_iterator():
print(f"Shape of image [N, C, H, W]: {image.shape} {image.dtype}")
print(f"Shape of label: {label.shape} {label.dtype}")
break
for data in test_dataset.create_dict_iterator():
print(f"Shape of image [N, C, H, W]: {data['image'].shape} {data['image'].dtype}")
print(f"Shape of label: {data['label'].shape} {data['label'].dtype}")
break
3、网络构建
mindspore.nn类是构建所有网络的基类,也是网络的基本单元。当用户需要自定义网络时,可以继承nn.Cell类,并重写__init__方法和construct方法。__init__包含所有网络层的定义,construct中包含数据Tensor的变换过程。
# Define model
class Network(nn.Cell):
def __init__(self):
super().__init__()
self.flatten = nn.Flatten()
self.dense_relu_sequential = nn.SequentialCell(
nn.Dense(28*28, 512),
nn.ReLU(),
nn.Dense(512, 512),
nn.ReLU(),
nn.Dense(512, 10)
)
def construct(self, x):
x = self.flatten(x)
logits = self.dense_relu_sequential(x)
return logits
model = Network()
print(model)
执行结果为:
4、模型训练
在模型训练中,一个完整的训练过程(step)需要实现以下三步:
- 正向计算:模型预测结果(logits),并与正确标签(label)求预测损失(loss)。
- 反向传播:利用自动微分机制,自动求模型参数(parameters)对于loss的梯度(gradients)。
- 参数优化:将梯度更新到参数上。
MindSpore使用函数式自动微分机制,因此针对上述步骤需要实现:
- 定义正向计算函数。
- 使用value_and_grad通过函数变换获得梯度计算函数。
- 定义训练函数,使用set_train设置为训练模式,执行正向计算、反向传播和参数优化。
# Instantiate loss function and optimizer
loss_fn = nn.CrossEntropyLoss()
optimizer = nn.SGD(model.trainable_params(), 1e-2)
# 1. Define forward function
def forward_fn(data, label):
logits = model(data)
loss = loss_fn(logits, label)
return loss, logits
# 2. Get gradient function
grad_fn = mindspore.value_and_grad(forward_fn, None, optimizer.parameters, has_aux=True)
# 3. Define function of one-step training
def train_step(data, label):
(loss, _), grads = grad_fn(data, label)
optimizer(grads)
return loss
def train(model, dataset):
size = dataset.get_dataset_size()
model.set_train()
for batch, (data, label) in enumerate(dataset.create_tuple_iterator()):
loss = train_step(data, label)
if batch % 100 == 0:
loss, current = loss.asnumpy(), batch
print(f"loss: {loss:>7f} [{current:>3d}/{size:>3d}]")
定义测试函数,用于评估模型的性能
def test(model, dataset, loss_fn):
num_batches = dataset.get_dataset_size()
model.set_train(False)
total, test_loss, correct = 0, 0, 0
for data, label in dataset.create_tuple_iterator():
pred = model(data)
total += len(data)
test_loss += loss_fn(pred, label).asnumpy()
correct += (pred.argmax(1) == label).asnumpy().sum()
test_loss /= num_batches
correct /= total
print(f"Test: \n Accuracy: {(100*correct):>0.1f}%, Avg loss: {test_loss:>8f} \n")
训练过程需多次迭代数据集,一次完整的迭代称为一轮(epoch)。在每一轮,遍历训练集进行训练,结束后使用测试集进行预测。打印每一轮的loss值和预测准确率(Accuracy),可以看到loss在不断下降,Accuracy在不断提高。
epochs = 3
for t in range(epochs):
print(f"Epoch {t+1}\n-------------------------------")
train(model, train_dataset)
test(model, test_dataset, loss_fn)
print("Done!")
在此设置三轮,3个epoch,训练的loss在不断下降。准确率也逐步升高。
Epoch 1 ------------------------------- loss: 2.305289 [ 0/938] loss: 1.624348 [100/938] loss: 1.104460 [200/938] loss: 0.502375 [300/938] loss: 0.648946 [400/938] loss: 0.319905 [500/938] loss: 0.481640 [600/938] loss: 0.321123 [700/938] loss: 0.442546 [800/938] loss: 0.273236 [900/938] Test: Accuracy: 90.8%, Avg loss: 0.322175 Epoch 2 ------------------------------- loss: 0.217165 [ 0/938] loss: 0.264473 [100/938] loss: 0.318727 [200/938] loss: 0.392735 [300/938] loss: 0.398939 [400/938] loss: 0.339206 [500/938] loss: 0.165617 [600/938] loss: 0.166550 [700/938] loss: 0.466447 [800/938] loss: 0.273829 [900/938] Test: Accuracy: 92.8%, Avg loss: 0.258895 Epoch 3 ------------------------------- loss: 0.168608 [ 0/938] loss: 0.218002 [100/938] loss: 0.167067 [200/938] loss: 0.239305 [300/938] loss: 0.178461 [400/938] loss: 0.296701 [500/938] loss: 0.285426 [600/938] loss: 0.159142 [700/938] loss: 0.189556 [800/938] loss: 0.243780 [900/938] Test: Accuracy: 94.0%, Avg loss: 0.211683 Done!
5、保存模型
# Save checkpoint
mindspore.save_checkpoint(model, "model.ckpt")
print("Saved Model to model.ckpt")
模型保存在当前路径下:
6、加载模型
加载保存的权重分为两步:
- 重新实例化模型对象,构造模型。
- 加载模型参数,并将其加载至模型上。
# Instantiate a random initialized model
model = Network()
# Load checkpoint and load parameter to model
param_dict = mindspore.load_checkpoint("model.ckpt")
param_not_load, _ = mindspore.load_param_into_net(model, param_dict)
print(param_not_load)
param_not_load
是未被加载的参数列表,为空时代表所有参数均加载成功。
加载后的模型可以直接用于预测推理。
model.set_train(False)
for data, label in test_dataset:
pred = model(data)
predicted = pred.argmax(1)
print(f'Predicted: "{predicted[:10]}", Actual: "{label[:10]}"')
break
结果为:
Predicted: "[1 0 1 9 0 1 9 8 2 5]", Actual: "[1 0 1 9 0 1 9 8 2 5]"
最后打印时间啦,今天的学习到这儿。