Java的发展历史 Java 8 (又称为 jdk 1.8) 是 Java 语言开发的一个主要版本。Java8 商用收费从2019年1月份开始,Oracle JDK开始对JavaSE 8 之后的版本开始进行商用收费,确切的说是 8u201/202 之后的版本。
Stream API
Java 8引入了全新的Stream API。这里的Stream和I/O流不同,它更像具有Iterable的集合类,但行为和集合类又有所不同。Stream API引入的目的在于弥补Java函数式编程的缺陷。对于很多支持函数式编程的语言,map()、reduce()基本上都内置到语言的标准库中了,不过,Java 8的Stream API总体来讲仍然是非常完善和强大,足以用很少的代码完成许多复杂的功能。
创建一个Stream有很多方法,最简单的方法是把一个Collection变成Stream。我们来看最基本的几个操作:
public static void main(String[] args) {
List<Integer> numbers = Arrays.asList(1, 2, 3, 4, 5, 6, 7, 8, 9, 10);
Stream<Integer> stream = numbers.stream();
stream.filter((x) -> {
return x % 2 == 0;
}).map((x) -> {
return x * x;
}).forEach(System.out::println);
}
集合类新增的stream()方法用于把一个集合变成Stream,然后,通过filter()、map()等实现Stream的变换。Stream还有一个forEach()来完成每个元素的迭代。为什么不在集合类实现这些操作,而是定义了全新的Stream API?Oracle官方给出了几个重要原因:
一是集合类持有的所有元素都是存储在内存中的,非常巨大的集合类会占用大量的内存,而Stream的元素却是在访问的时候才被计算出来,这种“延迟计算”的特性有点类似Clojure的lazy-seq,占用内存很少。
二是集合类的迭代逻辑是调用者负责,通常是for循环,而Stream的迭代是隐含在对Stream的各种操作中,例如map()。
要理解“延迟计算”,不妨创建一个无穷大小的Stream。如果要表示自然数集合,显然用集合类是不可能实现的,因为自然数有无穷多个。但是Stream可以做到。自然数集合的规则非常简单,每个元素都是前一个元素的值+1,因此,自然数发生器用代码实现如下:
class NaturalSupplier implements Supplier<Long> {
long value = 0;
public Long get() {
this.value = this.value + 1;
return this.value;
}
}
反复调用get(),将得到一个无穷数列,利用这个Supplier,可以创建一个无穷的Stream:
public static void main(String[] args) {
Stream<Long> natural = Stream.generate(new NaturalSupplier());
natural.map((x) -> {
return x * x;
}).limit(10).forEach(System.out::println);
}
对这个Stream做任何map()、filter()等操作都是完全可以的,这说明Stream API对Stream进行转换并生成一个新的Stream并非实时计算,而是做了延迟计算。当然,对这个无穷的Stream不能直接调用forEach(),这样会无限打印下去。但是我们可以利用limit()变换,把这个无穷Stream变换为有限的Stream。利用Stream API,可以设计更加简单的数据接口。例如,生成斐波那契数列,完全可以用一个无穷流表示(受限Java的long型大小,可以改为BigInteger):
class FibonacciSupplier implements Supplier<Long> {
long a = 0;
long b = 1;
@Override
public Long get() {
long x = a + b;
a = b;
b = x;
return a;
}
}
public class FibonacciStream {
public static void main(String[] args) {
Stream<Long> fibonacci = Stream.generate(new FibonacciSupplier());
fibonacci.limit(10).forEach(System.out::println);
}
}
如果想取得数列的前10项,用limit(10),如果想取得数列的第20~30项,用:
List<Long> list = fibonacci.skip(20).limit(10).collect(Collectors.toList());
最后通过collect()方法把Stream变为List。该List存储的所有元素就已经是计算出的确定的元素了。用Stream表示Fibonacci数列,其接口比任何其他接口定义都要来得简单灵活并且高效。
计算π可以利用π的展开式:π/4 = 1 - 1/3 + 1/5 - 1/7 + 1/9 - ...
把π表示为一个无穷Stream如下:
class PiSupplier implements Supplier<Double> {
double sum = 0.0;
double current = 1.0;
boolean sign = true;
@Override
public Double get() {
sum += (sign ? 4 : -4) / this.current;
this.current = this.current + 2.0;
this.sign = ! this.sign;
return sum;
}
}
Stream<Double> piStream = Stream.generate(new PiSupplier());
piStream.skip(100).limit(10)
.forEach(System.out::println);
这个级数从100项开始可以把π的值精确到3.13~3.15之间:
3.1514934010709914
3.1317889675734545
3.1513011626954057
3.131977491197821
3.1511162471786824
3.1321589012071183
3.150938243930123
3.132333592767332
3.1507667724908344
3.1325019323081857
利用欧拉变换对级数进行加速,可以利用下面的公式:
用代码实现就是把一个流变成另一个流:
class EulerTransform implements Function<Double, Double> {
double n1 = 0.0;
double n2 = 0.0;
double n3 = 0.0;
@Override
public Double apply(Double t) {
n1 = n2;
n2 = n3;
n3 = t;
if (n1 == 0.0) {
return 0.0;
}
return calc();
}
double calc() {
double d = n3 - n2;
return n3 - d * d / (n1 - 2 * n2 + n3);
}
}
Stream<Double> piStream2 = Stream.generate(new PiSupplier());
piStream2.map(new EulerTransform())
.limit(10)
.forEach(System.out::println);
可以在10项之内把π的值计算到3.141~3.142之间:
0.0
0.0
3.166666666666667
3.1333333333333337
3.1452380952380956
3.13968253968254
3.1427128427128435
3.1408813408813416
3.142071817071818
3.1412548236077655
还可以多次应用这个加速器:
Stream<Double> piStream3 = Stream.generate(new PiSupplier());
piStream3.map(new EulerTransform())
.map(new EulerTransform())
.map(new EulerTransform())
.map(new EulerTransform())
.map(new EulerTransform())
.limit(20)
.forEach(System.out::println);
20项之内可以计算出极其精确的值:
...
3.14159265359053
3.1415926535894667
3.141592653589949
3.141592653589719
可见用Stream API可以写出多么简洁的代码,用其他的模型也可以写出来,但是代码会非常复杂。
Lambda表达式
1. 用() -> {}代码块替代了整个匿名类。
// Java 8之前:
new Thread(new Runnable() {
@Override
public void run() {
System.out.println("Before Java8, too much code for too little to do");
}
}).start();
//Java 8方式:
new Thread( () -> System.out.println("In Java8, Lambda expression rocks !!") ).start();
2 .使用Java 8 lambda表达式进行事件处理
// Java 8之前:
JButton show = new JButton("Show");
show.addActionListener(new ActionListener() {
@Override
public void actionPerformed(ActionEvent e) {
System.out.println("Event handling without lambda expression is boring");
}
});
// Java 8方式:
show.addActionListener((e) -> {
System.out.println("Light, Camera, Action !! Lambda expressions Rocks");
});
3.使用lambda表达式对列表进行迭代
// Java 8之前:
List features = Arrays.asList("Lambdas", "Default Method", "Stream API", "Date and Time API");
for (String feature : features) {
System.out.println(feature);
}
// Java 8之后:
List features = Arrays.asList("Lambdas", "Default Method", "Stream API", "Date and Time API");
features.forEach(n -> System.out.println(n));
// 使用Java 8的方法引用更方便,方法引用由::双冒号操作符标示,
// 看起来像C++的作用域解析运算符
features.forEach(System.out::println);
4.使用lambda表达式和函数式接口Predicate
除了在语言层面支持函数式编程风格,Java 8也添加了一个包,叫做 java.util.function。它包含了很多类,用来支持Java的函数式编程。其中一个便是Predicate,使用 java.util.function.Predicate 函数式接口以及lambda表达式,可以向API方法添加逻辑,用更少的代码支持更多的动态行为。下面是Java 8 Predicate 的例子,展示了过滤集合数据的多种常用方法。Predicate接口非常适用于做过滤。
public static void main(args[]){
List languages = Arrays.asList("Java", "Scala", "C++", "Haskell", "Lisp");
System.out.println("Languages which starts with J :");
filter(languages, (str)->str.startsWith("J"));
System.out.println("Languages which ends with a ");
filter(languages, (str)->str.endsWith("a"));
System.out.println("Print all languages :");
filter(languages, (str)->true);
System.out.println("Print no language : ");
filter(languages, (str)->false);
System.out.println("Print language whose length greater than 4:");
filter(languages, (str)->str.length() > 4);
}
public static void filter(List names, Predicate condition) {
for(String name: names) {
if(condition.test(name)) {
System.out.println(name + " ");
}
}
}
// 更好的办法
public static void filter(List names, Predicate condition) {
names.stream().filter((name) -> (condition.test(name))).forEach((name) -> {
System.out.println(name + " ");
});
}
可以看到,Stream API的过滤方法也接受一个Predicate,这意味着可以将我们定制的 filter() 方法替换成写在里面的内联代码,这就是lambda表达式的魔力。另外,Predicate接口也允许进行多重条件的测试,下个例子将要讲到。
例5、如何在lambda表达式中加入Predicate
上个例子说到,java.util.function.Predicate 允许将两个或更多的 Predicate 合成一个。它提供类似于逻辑操作符AND和OR的方法,名字叫做and()、or()和xor(),用于将传入 filter() 方法的条件合并起来。例如,要得到所有以J开始,长度为四个字母的语言,可以定义两个独立的 Predicate 示例分别表示每一个条件,然后用 Predicate.and() 方法将它们合并起来,如下所示:
// 甚至可以用and()、or()和xor()逻辑函数来合并Predicate,
// 例如要找到所有以J开始,长度为四个字母的名字,你可以合并两个Predicate并传入
Predicate<String> startsWithJ = (n) -> n.startsWith("J");
Predicate<String> fourLetterLong = (n) -> n.length() == 4;
names.stream()
.filter(startsWithJ.and(fourLetterLong))
.forEach((n) -> System.out.print("nName, which starts with 'J' and four letter long is : " + n));
类似地,也可以使用 or() 和 xor() 方法。本例着重介绍了如下要点:可按需要将 Predicate 作为单独条件然后将其合并起来使用。简而言之,你可以以传统Java命令方式使用 Predicate 接口,也可以充分利用lambda表达式达到事半功倍的效果。
例6、Java 8中使用lambda表达式的Map和Reduce示例
本例介绍最广为人知的函数式编程概念map。它允许你将对象进行转换。例如在本例中,我们将 costBeforeTax 列表的每个元素转换成为税后的值。我们将 x -> x*x lambda表达式传到 map() 方法,后者将其应用到流中的每一个元素。然后用 forEach() 将列表元素打印出来。使用流API的收集器类,可以得到所有含税的开销。有 toList() 这样的方法将 map 或任何其他操作的结果合并起来。由于收集器在流上做终端操作,因此之后便不能重用流了。你甚至可以用流API的 reduce() 方法将所有数字合成一个,下一个例子将会讲到。
// 不使用lambda表达式为每个订单加上12%的税
List costBeforeTax = Arrays.asList(100, 200, 300, 400, 500);
for (Integer cost : costBeforeTax) {
double price = cost + .12*cost;
System.out.println(price);
}
// 使用lambda表达式
List costBeforeTax = Arrays.asList(100, 200, 300, 400, 500);
costBeforeTax.stream().map((cost) -> cost + .12*cost).forEach(System.out::println);
例6.2、Java 8中使用lambda表达式的Map和Reduce示例
在上个例子中,可以看到map将集合类(例如列表)元素进行转换的。还有一个 reduce() 函数可以将所有值合并成一个。Map和Reduce操作是函数式编程的核心操作,因为其功能,reduce 又被称为折叠操作。另外,reduce 并不是一个新的操作,你有可能已经在使用它。SQL中类似 sum()、avg() 或者 count() 的聚集函数,实际上就是 reduce 操作,因为它们接收多个值并返回一个值。流API定义的 reduceh() 函数可以接受lambda表达式,并对所有值进行合并。IntStream这样的类有类似 average()、count()、sum() 的内建方法来做 reduce 操作,也有mapToLong()、mapToDouble() 方法来做转换。这并不会限制你,你可以用内建方法,也可以自己定义。在这个Java 8的Map Reduce示例里,我们首先对所有价格应用 12% 的VAT,然后用 reduce() 方法计算总和。
// 为每个订单加上12%的税
// 老方法:
List costBeforeTax = Arrays.asList(100, 200, 300, 400, 500);
double total = 0;
for (Integer cost : costBeforeTax) {
double price = cost + .12*cost;
total = total + price;
}
System.out.println("Total : " + total);
// 新方法:
List costBeforeTax = Arrays.asList(100, 200, 300, 400, 500);
double bill = costBeforeTax.stream().map((cost) -> cost + .12*cost).reduce((sum, cost) -> sum + cost).get();
System.out.println("Total : " + bill);
例7、通过过滤创建一个String列表
过滤是Java开发者在大规模集合上的一个常用操作,而现在使用lambda表达式和流API过滤大规模数据集合是惊人的简单。流提供了一个 filter() 方法,接受一个 Predicate 对象,即可以传入一个lambda表达式作为过滤逻辑。下面的例子是用lambda表达式过滤Java集合,将帮助理解。
// 创建一个字符串列表,每个字符串长度大于2
List<String> filtered = strList.stream().filter(x -> x.length()> 2).collect(Collectors.toList());
System.out.printf("Original List : %s, filtered list : %s %n", strList, filtered);
另外,关于 filter() 方法有个常见误解。在现实生活中,做过滤的时候,通常会丢弃部分,但使用filter()方法则是获得一个新的列表,且其每个元素符合过滤原则。
例8、对列表的每个元素应用函数
我们通常需要对列表的每个元素使用某个函数,例如逐一乘以某个数、除以某个数或者做其它操作。这些操作都很适合用 map() 方法,可以将转换逻辑以lambda表达式的形式放在 map() 方法里,就可以对集合的各个元素进行转换了,如下所示。
// 将字符串换成大写并用逗号链接起来
List<String> G7 = Arrays.asList("USA", "Japan", "France", "Germany", "Italy", "U.K.","Canada");
String G7Countries = G7.stream().map(x -> x.toUpperCase()).collect(Collectors.joining(", "));
System.out.println(G7Countries);
例9、复制不同的值,创建一个子列表
本例展示了如何利用流的 distinct() 方法来对集合进行去重。
// 用所有不同的数字创建一个正方形列表
List<Integer> numbers = Arrays.asList(9, 10, 3, 4, 7, 3, 4);
List<Integer> distinct = numbers.stream().map( i -> i*i).distinct().collect(Collectors.toList());
System.out.printf("Original List : %s, Square Without duplicates : %s %n", numbers, distinct);
例10、计算集合元素的最大值、最小值、总和以及平均值
IntStream、LongStream 和 DoubleStream 等流的类中,有个非常有用的方法叫做 summaryStatistics() 。可以返回 IntSummaryStatistics、LongSummaryStatistics 或者 DoubleSummaryStatistic s,描述流中元素的各种摘要数据。在本例中,我们用这个方法来计算列表的最大值和最小值。它也有 getSum() 和 getAverage() 方法来获得列表的所有元素的总和及平均值。
//获取数字的个数、最小值、最大值、总和以及平均值
List<Integer> primes = Arrays.asList(2, 3, 5, 7, 11, 13, 17, 19, 23, 29);
IntSummaryStatistics stats = primes.stream().mapToInt((x) -> x).summaryStatistics();
System.out.println("Highest prime number in List : " + stats.getMax());
System.out.println("Lowest prime number in List : " + stats.getMin());
System.out.println("Sum of all prime numbers : " + stats.getSum());
System.out.println("Average of all prime numbers : " + stats.getAverage());
Lambda表达式 vs 匿名类
既然lambda表达式即将正式取代Java代码中的匿名内部类,那么有必要对二者做一个比较分析。一个关键的不同点就是关键字 this。匿名类的 this 关键字指向匿名类,而lambda表达式的 this 关键字指向包围lambda表达式的类。另一个不同点是二者的编译方式。Java编译器将lambda表达式编译成类的私有方法。使用了Java 7的 invokedynamic 字节码指令来动态绑定这个方法。
lambda表达式有个限制,那就是只能引用 final 或 final 局部变量,这就是说不能在lambda内部修改定义在域外的变量。
List<Integer> primes = Arrays.asList(new Integer[]{2, 3,5,7});
int factor = 2;
primes.forEach(element -> { factor++; });
//Compile time error : "local variables referenced from a lambda expression must be final or effectively final"
另外,只是访问它而不作修改是可以的,如下所示:
List<Integer> primes = Arrays.asList(new Integer[]{2, 3,5,7});
int factor = 2;
primes.forEach(element -> { System.out.println(factor*element); });
函数式接口
Optional
使用Base64
方法使用说明https://www.cnblogs.com/dalianpai/p/12662969.html
接口的默认方法和静态方法
说明https://blog.csdn.net/weixin_53041251/article/details/124835024
新增方法引用格式
:: 方法引用 也是JDK8中的新的语法
方法引用的格式
符号表示: ::
符号说明:双冒号为方法引用运算符,而它所在的表达式被称为 方法引用
应用场景:如果Lambda表达式所要实现的方案,已经有其他方法存在相同的方案,那么则可以使用方法引用。
常见的引用方式:
方法引用在JDK8中使用是相当灵活的,有以下几种形式:
instanceName::methodName 对象::方法名
Person person = new Person();
String s1 = person.name()
String s2 = persion::name;
ClassName::staticMethodName 类名::静态方法
long t1 = System.currentTimeMillis();
long t2 = System::currentTimeMillis;
ClassName::methodName 类名::普通方法
//Java面向对象中,类名只能调用静态方法,类名引用实例方法是用前提的,实际上是拿第一个参数作为方法的调用者
Function<String,Integer> f01 = (s)->s.length();
Function<String,Integer> function1 = String::length;
ClassName::new 类名::new 调用的构造器
//由于构造器的名称和类名完全一致,所以构造器引用使用 ::new 的格式使用,
Supplier<Person> sup 01= ()->new Person();
Supplier<Person> sup02 = Person::new;
TypeName[]::new String[]::new 调用数组的构造器
Function<Integer,String[]> fun1 = (len)->new String[len]
String[] a1 = fun1.apply(3);
Function<Integer,String[]> fun2 = String[]::new;
String[] a2 = fun2.apply(5);
方法引用的注意事项:
被引用的方法,参数要和接口中的抽象方法的参数一样
当接口抽象方法有返回值时,被引用的方法也必须有返回值
注解相关的改变
在JDK 8中,最重要的注解相关的变化之一是引入了java.lang.invoke.MethodHandles
中的lookup()
方法,它允许在运行时动态查找和调用方法,从而打破了反射API的限制,使其能够访问私有方法和构造函数。
此外,JDK 8中还引入了重复注解和类型注解,这些特性允许注解可以在同一个声明上多次使用,并允许在注解中使用类型声明。
下面是一个使用JDK 8引入的MethodHandles.lookup()
来动态调用方法的简单示
import java.lang.invoke.MethodHandles;
import java.lang.invoke.MethodType;
public class DynamicMethodInvocation {
public static void main(String[] args) throws Throwable {
// 获取当前类的MethodHandles.lookup()
MethodHandles.Lookup lookup = MethodHandles.lookup();
// 查找并获取指定方法的MethodHandle
MethodHandle methodHandle = lookup.findVirtual(DynamicMethodInvocation.class, "greet", MethodType.methodType(void.class, String.class));
// 使用MethodHandle调用方法
methodHandle.invokeExact("World");
//JDK17
methodHandle.invokeExact(new DynamicMethodInvocation(),"World");
}
// 被动态调用的方法
public void greet(String name) {
System.out.println("Hello, " + name + "!");
}
}
在这个例子中,我们使用MethodHandles.lookup()
获取了一个查找器对象,然后使用它来查找并获取一个MethodHandle
,该MethodHandle
可以用来在运行时动态地调用greet
方法。invokeExact
方法用于执行方法,传入了一个字符串作为参数。
可重复注解https://cloud.tencent.com/developer/article/1079933
支持并行(parallel)数组
// 使用并行排序
Arrays.parallelSort(array);
使用和解释https://www.cnblogs.com/Jacck/p/8095404.html
对并发类(Concurrency)的扩展
在Java Development Kit (JDK) 8中,并发类库得到了显著的扩展,包括新的fork/join框架,以及CompletableFuture类,这些都是在java.util.concurrent包中。
1.Fork/Join框架:
Fork/Join框架是JDK 7中引入的,它提供了一种并行处理任务的方式。Fork意味着将一个大的任务分割成若干个小的任务,Join则意味着再将分割出来的小任务的结果合并起来。
import java.util.concurrent.ForkJoinPool;
import java.util.concurrent.RecursiveTask;
class Fibonacci extends RecursiveTask<Integer> {
final int n;
public Fibonacci(int n) {
this.n = n;
}
@Override
protected Integer compute() {
if (n <= 1)
return n;
Fibonacci f1 = new Fibonacci(n - 1);
f1.fork();
Fibonacci f2 = new Fibonacci(n - 2);
return f2.compute() + f1.join();
}
}
public class FibonacciDemo {
public static void main(String[] args) {
ForkJoinPool pool = new ForkJoinPool();
Fibonacci fibonacci = new Fibonacci(10);
pool.invoke(fibonacci);
System.out.println("Fibonacci of 10 is: " + fibonacci.join());
}
}
2. CompletableFuture类
CompletableFuture类提供了一种改进的编程模式来处理异步编程,它可以在完成时获取结果,可以设置回调,也可以组合多个CompletableFuture。
import java.util.concurrent.CompletableFuture;
import java.util.concurrent.ExecutionException;
public class CompletableFutureDemo {
public static void main(String[] args) throws ExecutionException, InterruptedException {
CompletableFuture<Integer> future = CompletableFuture.supplyAsync(() -> {
try {
Thread.sleep(1000);
} catch (InterruptedException e) {
e.printStackTrace();
}
return 20;
});
future.thenAccept(System.out::println).join();
}
}
在这两个例子中,我们都展示了如何使用JDK 8的并发类库来处理并行任务。Fork/Join框架适合处理可以被划分为更小子任务的计算密集型任务,而CompletableFuture则适合处理异步计算。
新的Date以及Time API
用法实例讲解1https://baijiahao.baidu.com/s?id=1765657984236018735&wfr=spider&for=pc 用法实例讲解2
https://ost.51cto.com/posts/27790新旧API优劣对比,只看前两段就可以,后面不详细
https://blog.csdn.net/ymxk2876721452/article/details/138754066