Pytorch如何修改ResNet等网络的输入通道数量in_channels的个数

在语义分割中,预训练模型一般是3通道的,但是有时候我们需要改变输入通道数,方法如下:

首先加载预训练模型,打印模型第一层

import torchvision.models as models
backbone = models.resnet101(pretrained=False)
print(backbone.conv1)

打印得到第一层的结构

Conv2d(3, 64, kernel_size=(7, 7), stride=(2, 2), padding=(3, 3), bias=False)

可以看到输入模型的通道数为3,只要修改这个3就可以了,若期望的输入是9通道,则进行如下操作即可:

backbone.conv1= nn.Conv2d(9, 64, kernel_size=7, stride=2, padding=3,bias=False)

 

 

 

 

评论 8
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值