概率论与统计学区别是什么?

概率论是统计推断的基础,在给定数据生成过程下观测、研究数据的性质;而统计推断则根据观测的数据,反向思考其数据生成过程。预测、分类、聚类、估计等,都是统计推断的特殊形式,强调对于数据生成过程的研究。

简单来说,概率论研究的是“是什么”的问题,统计学研究的是‘怎么办“的问题。

统计和概率是方法论上的区别,一个是推理,一个是归纳。

打个比方,概率论研究的是一个白箱子,你知道这个箱子的构造(里面有几个红球、几个白球,也就是所谓的分布函数),然后计算下一个摸出来的球是红球的概率。而统计学面对的是一个黑箱子,你只看得到每次摸出来的是红球还是白球,然后需要猜测这个黑箱子的内部结构,例如红球和白球的比例是多少?(参数估计)能不能认为红球40%,白球60%?(假设检验)

而概率论中的许多定理与结论,如大数定理、中心极限定理等保证了统计推断的合理性。做统计推断一般都需要对那个黑箱子做各种各样的假设,这些假设都是概率模型,统计推断实际上就是在估计这些模型的参数。

概率论与统计学的关系是什么?-CSDN博客

参考资源链接:[《猜度术》:雅各布·伯努利的奠基性概率论贡献历史揭秘](https://wenku.csdn.net/doc/79y9vx3a2x?utm_source=wenku_answer2doc_content) 《猜度术》中伯努利大数定律(Law of Large Numbers)的表述是:在一定条件下,随着试验次数的增加,样本均值将无限接近于期望值。雅各布·伯努利在其著作中首次正式描述了这一定律,并对其进行了数学证明。这一定律表明,当独立随机事件重复进行时,样本平均值期望值之间的差距会随着试验次数的增加而减小,最终会无限趋近于期望值。 在现代概率论统计学中,伯努利大数定律有着广泛的应用。例如,它为保险精算学提供了一种理论基础,通过大量数据的收集分析,预测未来的索赔频率金额。在金融领域,这一定律同样至关重要,它用于市场风险的评估投资组合的管理。在工业生产中,通过重复的实验质量控制,伯努利大数定律帮助预测产品的合格率,并进行质量改进。此外,在机器学习数据挖掘中,大数定律用于优化模型,通过增加训练样本的数量来提高模型的准确性可靠性。 为了深入了解《猜度术》及其对现代概率论的影响,建议参阅《《猜度术》:雅各布·伯努利的奠基性概率论贡献历史揭秘》一书。这本书不仅详细介绍了《猜度术》的核心内容背景,还深入探讨了伯努利大数定律的历史背景实际应用,是研究数学史概率论的宝贵资源。 参考资源链接:[《猜度术》:雅各布·伯努利的奠基性概率论贡献历史揭秘](https://wenku.csdn.net/doc/79y9vx3a2x?utm_source=wenku_answer2doc_content)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值