
极客时间
文章平均质量分 94
hello kitty w
这个作者很懒,什么都没留下…
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
[极客时间]LangChain 实战课 -----|(11) 记忆:通过Memory记住客户上次买花时的对话细节
在默认情况下,无论是 LLM 还是代理都是无状态的,每次模型的调用都是独立于其他交互的。也就是说,我们每次通过 API 开始和大语言模型展开一次新的对话,它都不知道你其实昨天或者前天曾经和它聊过天了。你肯定会说,不可能啊,每次和 ChatGPT 聊天的时候,ChatGPT 明明白白地记得我之前交待过的事情。的确如此,ChatGPT 之所以能够记得你之前说过的话,正是因为它使用了记忆(Memory)机制,记录了之前的对话上下文,并且把这个上下文作为提示的一部分,在最新的调用中传递给了模型。在聊天机器人的构原创 2025-07-30 21:09:06 · 667 阅读 · 0 评论 -
[极客时间]LangChain 实战课 -----|(10) 链(下):想学“育花”还是“插花”?用RouterChain确定客户意图
上一节课中,我带着你学习了 Chain 的基本概念,还使用了 LLMChain 和 SequencialChain,这一节课,我们再来看看其他类型的一些 Chain 的用法。首先,还是先看一下今天要完成一个什么样的任务。这里假设咱们的鲜花运营智能客服 ChatBot 通常会接到两大类问题。你的需求是,如果接到的是第一类问题,你要给 ChatBot A 指示;如果接到第二类的问题,你要给 ChatBot B 指示。我们可以根据这两个场景来构建两个不同的目标链。遇到不同类型的问题,LangChain 会通过原创 2025-07-03 22:22:22 · 815 阅读 · 0 评论 -
[极客时间]LangChain 实战课 -----|(9) 链(上):写一篇完美鲜花推文?用SequencialChain链接不同的组件
但是,如果你想开发更复杂的应用程序,那么就需要通过 “Chain” 来链接 LangChain 的各个组件和功能——模型之间彼此链接,或模型与其他组件链接。这种将多个组件相互链接,组合成一个链的想法简单但很强大。它简化了复杂应用程序的实现,并使之更加模块化,能够创建出单一的、连贯的应用程序,从而使调试、维护和改进应用程序变得容易。说到链的实现和使用,也简单。首先 LangChain 通过设计好的接口,实现一个具体的链的功能。原创 2025-06-30 22:43:32 · 808 阅读 · 0 评论 -
[极客时间]LangChain 实战课 -----|(8) 输出解析:用OutputParser生成鲜花推荐列表
先创建了一个空的 DataFrame,用于存储从模型生成的描述。接下来,通过一个名为 FlowerDescription 的 Pydantic BaseModel 类,定义了期望的数据格式(也就是数据的结构)。# 创建一个空的DataFrame用于存储结果# 数据准备flowers = ["玫瑰", "百合", "康乃馨"]# 定义我们想要接收的数据格式flower_type: str = Field(description="鲜花的种类")原创 2025-06-25 21:50:36 · 649 阅读 · 0 评论 -
[极客时间]LangChain 实战课 -----|调用模型:使用OpenAI API还是微调开源Llama2/ChatGLM?(7)
今天的课程到此就结束了,相信你学到了很多新东西吧。的确,进入大模型开发这个领域,就好像打开了通往新世界的一扇门,有太多的新知识,等待着你去探索。现在,你已经知道大模型训练涉及在大量数据上使用深度学习算法,通常需要大量计算资源和时间。训练后,模型可能不完全适合特定任务,因此需要微调,即在特定数据集上继续训练,以使模型更适应该任务。为了减小部署模型的大小和加快推理速度,模型还会经过量化,即将模型参数从高精度格式减少到较低精度。如果你想继续深入学习大模型,那么有几个工具你不得不接着研究。原创 2025-06-24 22:35:40 · 956 阅读 · 0 评论 -
[极客时间]LangChain 实战课 -----|提示工程(下):用思维链和思维树提升模型思考质量(6)
这节课我们介绍了 Chain of Thought(CoT,即“思维链”)和 Tree of Thoughts(ToT,即“思维树”)这两个非常有趣的概念,并探讨了如何利用它们引导大型语言模型进行更深入的推理。CoT 的核心思想是通过生成一系列中间推理步骤来增强模型的推理能力。在 Few-Shot CoT 和 Zero-Shot CoT 两种应用方法中,前者通过提供链式思考示例传递给模型,后者则直接告诉模型进行要按部就班的推理。原创 2025-06-21 15:50:57 · 754 阅读 · 0 评论 -
[极客时间]LangChain 实战课 -----|提示工程(上):用少样本FewShotTemplate和ExampleSelector创建应景文案(05)
当你用 print 语句打印出最终传递给大模型的提示时,一切就变得非常明了。秘密在于,LangChain 的输出解析器偷偷的在提示中加了一段话,也就是 {format_instructions} 中的内容。这段由 LangChain 自动添加的文字,就清楚地指示着我们希望得到什么样的回答以及回答的具体格式。提示指出,模型需要根据一个 schema 来格式化输出文本,这就是在告诉模型,你就 follow 这个 schema(schema,可以理解为对数据结构的描述)的格式,就行啦!原创 2025-06-17 22:27:08 · 684 阅读 · 0 评论 -
[极客时间]LangChain 实战课 -----|模型I/O:输入提示、调用模型、解析输出(04)
从这节课开始,我们将对 LangChain 中的六大核心组件一一进行详细的剖析。模型,位于 LangChain 框架的最底层,它是基于语言模型构建的应用的核心元素,因为所谓 LangChain 应用开发,就是以 LangChain 作为框架,通过 API 调用大模型来解决具体问题的过程。可以说,整个 LangChain 框架的逻辑都是由 LLM 这个发动机来驱动的。没有模型,LangChain 这个框架也就失去了它存在的意义。原创 2025-06-15 19:47:08 · 182 阅读 · 0 评论 -
[极客时间]LangChain 实战课 -----|LangChain系统安装和快速入门(3)
在深入讲解 LangChain 的每一个具体组件之前,我想带着你从头完成一个很实用、很有意义的实战项目。目的就是让你直观感受一下 LangChain 作为一个基于大语言模型的应用开发框架,功能到底有多么强大。好的,现在就开始!整个框架分为这样三个部分。**核心实现机制:**这个项目的核心实现机制是下图所示的数据处理管道(Pipeline)。在这个管道的每一步中,LangChain 都为我们提供了相关工具,让你轻松实现基于文档的问答功能。具体流程分为下面 5 步。上面 5 个环节的介绍都非常简单,有些概念原创 2025-06-12 22:21:18 · 1012 阅读 · 0 评论 -
[极客时间]LangChain 实战课 -----|LangChain系统安装和快速入门(2)
大语言模型是一种人工智能模型,通常使用深度学习技术,比如神经网络,来理解和生成人类语言。这些模型的“大”在于它们的参数数量非常多,可以达到数十亿甚至更多,这使得它们能够理解和生成高度复杂的语言模式。你可以将**大语言模型想象成一个巨大的预测机器,其训练过程主要基于“猜词”:**给定一段文本的开头,它的任务就是预测下一个词是什么。模型会根据大量的训练数据(例如在互联网上爬取的文本),试图理解词语和词组在语言中的用法和含义,以及它们如何组合形成意义。它会通过不断地学习和调整参数,使得自己的预测越来越准确。原创 2025-06-10 22:57:39 · 683 阅读 · 2 评论 -
[极客时间]LangChain 实战课 ----- 开篇词|带你亲证AI应用开发的“奇点”时刻(1)
在这个模块中,我会介绍 LangChain 系统的安装流程,以及如何进行快速的入门操作。同时,详细指导你如何使用 LangChain 来构建一个基于“易速鲜花”本地知识库的智能问答系统,让你直接感受 LangChain 强大的功能。原创 2025-06-09 22:08:00 · 600 阅读 · 0 评论