WSL Ubuntu安装TensorFlow-GPU、PyTorch-GPU

在Windows 11的WSL Ubuntu中安装TensorFlow-GPU、PyTorch-GPU


0、WSL Ubuntu安装

  • 在Windows 11的商店中下载即可,此处以Ubuntu22.04.3为例

1、CUDA Toolkit安装

  • 参考公孙启的文章Windows11 + WSL Ubuntu + Pycharm + Conda for deeplearning
  • 前往nVidia官网下载CUDA Toolkit,这里以11.8为例,因为PyTorch目前支持11.8和12.1两个版本的CUDA
  • 下载时注意选择WSL-Ubuntu,根据网页下方提供的命令依次输入即可完成安装在这里插入图片描述
  • 配置环境变量
    • sudo vi ~/.bashrc
    • 添加以下内容,
### 在 Windows 系统上安装 Faiss-GPU 库 Faiss 是一个高效的相似性搜索库,支持 CPU 和 GPU 操作。然而,根据官方文档[^1],`faiss-gpu` 软件包仅在 Linux 系统上被正式支持,并且依赖于 CUDA 来实现 GPU 加速。对于 Windows 系统,官方并未提供直接支持的 `faiss-gpu` 安装方式[^2]。 尽管如此,如果用户希望尝试在 Windows 系统上安装 `faiss-gpu`,可以考虑以下方法: #### 方法 1: 使用 WSL (Windows Subsystem for Linux) WSLWindows 提供的一个兼容层,允许在 Windows 系统上运行 Linux 命令行工具。通过 WSL,可以安装 Linux 版本的 `faiss-gpu` 并利用 NVIDIA 的 CUDA 工具链进行加速。 1. **启用 WSL** 在 PowerShell 中以管理员权限运行以下命令: ```powershell wsl --install ``` 安装完成后,重启系统并选择一个 Linux 发行版(如 Ubuntu)。 2. **安装 NVIDIA 驱动和 CUDA** 确保 Windows 系统已安装最新版本的 NVIDIA 驱动程序,并配置 CUDA 工具链。 3. **安装 faiss-gpu** 在 WSL 环境中运行以下命令: ```bash conda install -c pytorch faiss-gpu cudatoolkit=11.3 ``` #### 方法 2: 构建源代码 如果 WSL 不适用,另一种选择是从源代码构建 `faiss-gpu`。此方法需要较高的技术能力,并且可能涉及复杂的依赖管理。 1. **安装依赖项** 确保系统已安装以下工具: - CMake - Visual Studio (支持 CUDA 的版本) - CUDA Toolkit 2. **克隆 Faiss 仓库** ```bash git clone https://github.com/facebookresearch/faiss.git cd faiss ``` 3. **构建项目** 使用 CMake 构建项目,并指定 GPU 支持: ```bash mkdir build && cd build cmake .. -DBUILD_GPU=ON -DCMAKE_PREFIX_PATH=<path_to_cuda> cmake --build . --config Release ``` 4. **安装到 Conda 环境** 将生成的库文件安装到 Conda 环境中: ```bash python setup.py install ``` #### 注意事项 - Windows 系统上的 `faiss-gpu` 安装可能会遇到兼容性问题,建议优先使用 Linux 系统。 - 如果仅需 CPU 支持,可以直接通过以下命令安装 `faiss-cpu`: ```bash conda install -c pytorch faiss-cpu ``` ```python import faiss print(faiss.__version__) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值