遥感影像-语义分割数据集:GID数据集详细介绍及训练样本处理流程

GID数据集:大规模高分卫星土地覆盖数据集

原始数据集详情

简介:GID 是基于我国Gaofen-2卫星数据而构建的大规模高分辨率遥感图像土地覆盖数据集。GID数据集分为大规模分类集(GID-5)和精细土地覆盖集(GID-15)两个部分。大规模分类集(GID-5)包含建筑、农田、森林、草地和水域等5个土地覆盖类别,共计150景像素级标注的Gaofen-2卫星遥感图像。其中,训练集为120景图像,验证集为30景图像。Gaofen-2卫星遥感图像的尺寸为6800×7200,由遥感解译领域的专家进行像素级标注。精细土地覆盖集(GID-15)包含稻田、灌溉地、旱地、园地、乔木林、灌木林、自然草地、人工草地、工业用地、城市住宅、农村住宅、交通用地、河流、湖泊、池塘等15个类别,共计有30000个图像块。

GID数据集具有以下优点:

(1)土地覆盖信息分布广泛。GID包含150景高质量高分辨率的Gaofen-2卫星遥感图像,这些图像是从中国60多个不同的城市拍摄获取,每幅图像都没有云雾遮挡且清晰高质。整体图像的覆盖范围超过50000平方公里的地理区域。

(2)贴近真实的地物分布特性。GID包括相同区域不同季节、不同光照条件下的大量样本。GID数据集在光谱、纹理、结构上具有极为丰富的多样性,十分贴近真实的地物分布特性。

KeyValue
卫星类型高分2
覆盖区域覆盖范围超过50000平方公里
场景中国60多个不同的城市
分辨率0.8m
数量大规模分类集(GID-5)150张、精细土地覆盖集(GID-15)10张
单张尺寸7200*6800
原始影像位深8位
标签图片位深8位
原始影像通道数三通道
标签图片通道数三通道

标签类别对照表

5类别表:

像素值类别名(英文)类别名(中文)RGB
1built-up建筑255,0,0
2water水体0,0,255
3forest森林0,255,255
4meadow草地255,255,0
5farmland农田0,255,0

15类别表:

像素值类别名(英文)类别名(中文)RGB
1industrial land工业用地0, 0, 63
2urban residential城市住宅0, 63, 63
3rural residential农村住宅0, 63, 0
4traffic land交通用地0, 63, 127
5paddy field稻田0, 63, 191
6irrigated land灌溉地0, 63, 255
7dry cropland旱地0, 127, 63
8garden land园地0, 127, 127
9arbor forest乔木林0, 0, 127
10shrub land灌木林0, 0, 191
11natural meadow自然草地0, 0, 255
12artifical meadow人工草地0, 191, 127
13river河流0, 127, 191
14lake湖泊0, 127, 255
15pond池塘0, 100, 155

数据处理部分

大家是否有这样的困惑,真值标签图片的像素值太小,比如1、2、3······,由于像素值太小,导致看上去标签图片全为黑色,无法看出真值标签与影像图片的像素位置是否对应?如果真值标签的像素值间隔太大,又无法直接作为训练样本。

其实有办法可以解决这个问题,那就是在像素值为1、2、3等的图片上添加一个彩色表,添加的彩色表不会改变图片的像素值,但是可以由彩色的视觉效果展示,如下图所示:
在这里插入图片描述

下面对原始影像及标签进行模型训练前的数据预处理,根据这套数据集的原始信息,原始数据包括原始影像和RGB真值图片,需要将RGB波段转化为单波段图片,然后根据自己训练模型的图片尺寸大小批量裁剪原始影像和标签为所需要的尺寸,比如512*512,另外如果需要检查裁剪后的数据是否一一对应,最好给标签数据添加颜色表,这样就可以轻易看出影像和真值标签是否一致。

下面就是使用代码对原始影像及原始标签进行批量裁剪为512*512大小,并给真值标签添加颜色表,效果图如下所示:
在这里插入图片描述

最后可以直接用于训练的数据集结构如下所示

/path/to/GID
├── train
│   ├── images
│   │   ├── 2522_0_0.tif
│   │   ├── 2522_0_512.tif
│   │   └── ......
│   └── labels
│       ├── 2522_0_0.tif
│       ├── 2522_0_512.tif
│       └── ......
└── val
    ├── images
    │   ├── 2522_512_512.tif
    │   ├── 2523_0_0.tif
    │   └── ......
    └── labels
        ├── 2522_512_512.tif
        ├── 2523_0_0.tif
        └── ......

相关数据和代码见 博主首页 个人简介
01、官网原始数据集;
02、中间处理好的大图数据集;
03、裁剪后可训练的小图数据集;

### 关于遥感数据集下载 对于语义分割任务,尤其是针对遥感图像的应用,有多个公开的数据集可以供研究者和开发者使用。以下是几个常见的遥感数据集及其获取方式: #### ISPRS数据集 ISPRS(International Society for Photogrammetry and Remote Sensing)提供了专门用于语义分割的遥感图像数据集[^1]。该数据集通常包含高分辨率的城市区域影像以及对应的标注文件。可以通过访问其官方网站或者相关竞赛页面来下载这些数据。 #### GID数据集 GID (Global Land Cover Federation) 是另一个广泛使用的全球土地覆盖分类数据库,在其中包含了丰富的训练样本适用于深度学习框架下的语义分割实验[^2]。要获得此资源,请查阅官方发布链接并遵循指引完成注册流程后再行下载操作。 #### LoveDA 数据集 & 华为杯挑战赛专用集合 由特定机构主办的比赛如“华为诺亚方舟实验室联合举办的‘LoveDA’”所提供的专属测试材料同样是非常宝贵的学习资料来源之一;它不仅限定了参赛队伍可利用的内容范围而且还设定了统一的标准便于比较不同方法的效果优劣程度。感兴趣的朋友可以直接前往赛事主页查询详情进而申请加入权限从而合法取得所需素材。 #### EvLab-SS 数据集 EvLab-SS 被设计用来评测实际工程项目环境里的语义分割技术表现如何,因此特别适合验证某些新型神经网络结构是否能在复杂条件下保持良好性能水平的任务需求上发挥重要作用[^3]。如果希望深入探索这一领域,则建议联系原作者团队了解进一步的合作可能性或是查看是否有更新版本可供自由取用的情况存在。 #### 自定义切片处理方案 当现有选项无法完全满足项目特殊要求时,还可以考虑自行构建个性化的大规模地理空间信息产品库。此时就需要借助编程工具实现自动化裁剪功能了。下面给出一段基于Python语言编写的小程序示范代码片段作为参考[^4]: ```python import numpy as np from PIL import Image def crop_image(image_path, save_dir, patch_size=512, stride=256): img = np.array(Image.open(image_path)) h, w = img.shape[:2] count = 0 for i in range(0, h-patch_size+stride, stride): for j in range(0, w-patch_size+stride, stride): cropped_img = img[i:i+patch_size,j:j+patch_size,:] im = Image.fromarray(cropped_img.astype('uint8')) im.save(f"{save_dir}/crop_{count}.png", format='PNG') count += 1 if __name__ == "__main__": image_file = 'path_to_large_image' output_folder = './cropped_images/' crop_image(image_file, output_folder) ``` 以上脚本实现了按照指定大小及步长参数切割原始大图的功能,并保存至目标目录下以便后续导入机器学习平台开展正式训练工作前预处理阶段的工作。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值