王亚
核刊名称:计算机应用研究
1、解决的问题:
之前的算法只能融合特定模态的融合,本文提出了更具普适性的框架,可以综合不同模态的融合。
2、摘要:
基于深度学习模型研究了多模态融合的特征描述,在训练时使用新的相关性损失函数进行训练优化,以此提取出更加稳健的特征向量。
从各个模态学习到的特征向量在训练步骤中相互指导以获得更稳健的特征表示。
首先,提取每个三维模型的三个模态特征。点云模态提描述结构信息,多视图模态描述描述视觉信息,Panorama全景视图模态描述三维模型的表面信息。
其次,提出的新的相关性损失函数可以有效减轻不同模态的特征差异以获取更稳健的特征向量,并在训练步骤实现不同模态的特征表示的相互指导,提升了学习效率。
最后,本文提出了一种基于统计思想的融合方法以融合不同模型的分类结果,用于最终的
三维模型分类和检索。