Pytorch实现RNN

本文详细介绍了如何在PyTorch中实现RNN,从导入库到获取和预处理数据,再到构建网络结构、定义损失和优化器、训练及测试网络。此外,还探讨了RNNCell与RNN的区别及其在实际应用中的作用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Pytorch实现RNN:

一、torch.nn.RNN()

1. 导入所需包

import torch
from torch.autograd import Variable # 获取变量
from torch.utils import data # 获取迭代数
import torchvision 
from torchvision.datasets import mnist # 获取数据集

2. 获取数据

2.1定义数据集预处理的方法

# 预处理
data_tf = torchvision.transforms.Compose(
    [torchvision.transforms.ToTensor(),
     torchvision.transforms.Normalize([0.5],[0.5])]
)

2.2 获取数据,同时对其进行预处理

# 获取数据
data_path = r'C:\Users\liev\Desktop\myproject\yin_test\MNIST_DATA_PyTorch'
train_data = mnist.MNIST(data_path,train=True,transform=data_tf,download=False)
test_data = mnist.MNIST(data_path,train=False,transform=data_tf,download=False)

3.网络结构

# 定义网络结构
class RNNnet(torch.nn.Module):
    def __init__(self):
        super(RNNnet, self).__init__()
        self.rnn1 = torch.nn.RNN(784,100,3,nonlinearity='relu')
        self.rnn2 = torch.nn.RNN(100,10,1,nonlinearity='relu')
    def forward(self, x):
        x = self.rnn1(x)
        x = torch.Tensor(x
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值