LeetCode - 560. 和为K的子数组(python)

给定一个整数数组和目标值k,本篇博客探讨如何找出数组中和为k的连续子数组的个数。例如,在数组[1,1,1]和目标k=2的情况下,存在两个符合条件的子数组[1,1]。解题关键在于利用前缀和与字典来统计子数组出现的次数,注意处理特殊情况,如数组元素可能小于0,以及单个元素等于k的情况。" 112292484,10296227,面试技巧:如何回答‘工作中遇到的难题及解决方法’,"['面试策略', '面试问题', '求职技巧', '技术面试', '职业发展']

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

560. 和为K的子数组

给定一个整数数组和一个整数 k,你需要找到该数组中和为 k 的连续的子数组的个数。

示例 1 :
输入:nums = [1,1,1], k = 2
输出: 2 , [1,1] 与 [1,1] 为两种不同的情况。

说明 :
数组的长度为 [1, 20,000]。
数组中元素的范围是 [-1000, 1000] ,且整数 k 的范围是 [-1e7, 1e7]。

解题:

# 一开始采用暴力解法,超出了时间限制
class Solution:
    def subarraySum(self, nums: List[int], k: int) -> int:
        result=0
        for i in range(len(nums)):
            s=nums[i]
            if s==k:
                result+=1
            for j in range(i+1,len(nums)):
                s+=nums[j]
                if s==k:
                    result+=1
        return result
# 改为如下代码
def subarraySum(nums, k):
    dic = {}
    # 注意此处如果没有dic[0]=1的话,后面必须要有对单个元素等于k的判断;如果有判断的话则不需要dic[0]=1
    # dic[0]=1
    acc, res = 0, 0
    for num in nums:
        acc += num
        if acc == k:
            res += 1
        if acc - k in dic:
            res += dic[acc - k]
        dic[acc] = dic.get(acc, 0) + 1
    return res

总结:

  1. 注意数组元素并不都大于0。
  2. 注意只有一个元素就满足k的情况。
  3. dict.get(key, default=None),参数:key – 字典中要查找的键。default – 如果指定键的值不存在时,返回该默认值。
  4. 字典:dic={}。
  5. 前缀和:该元素位置之前所有元素的总和。
  6. i到j之间子数组总和为k,则nums[j]-nums[i-1]=k,则有nums[i-1]=nums[j]-k,所以判断当前元素与k之间的差值是否是前若干元素总和即可,注意计数时并不都是+1,如果前若干元素总和=nums[j]-k的子数组个数大于1,则要全部加上,因为是不同的子数组。
### LeetCode 'Subarray Sum Equals K' 的 Python 解法 以下是针对该问题的一个高效解决方案,时间复杂度为 \(O(n)\),空间复杂度为 \(O(n)\)[^3]。 此方法的核心思想是利用前缀以及哈希表来记录之前计算过的累积及其出现次数。通过这种方式可以快速判断当前累积减去目标值 \(k\) 是否已经存在于之前的累积中。 #### 实现代码 ```python class Solution: def subarraySum(self, nums, k): """ :type nums: List[int] :type k: int :rtype: int """ count = {0: 1} # 初始化哈希表,表示累积为0的情况出现了1次 cur_sum = 0 # 当前累积初始化为0 result = 0 # 符合条件的子数组数量 for num in nums: cur_sum += num # 更新当前累积 # 如果 (cur_sum - k) 存在于哈希表中,则找到符合条件的子数组 if (cur_sum - k) in count: result += count[cur_sum - k] # 将当前累积加入到哈希表中,更新其出现次数 if cur_sum in count: count[cur_sum] += 1 else: count[cur_sum] = 1 return result # 返回最终的结果 ``` 上述实现的关键点如下: - 使用 `count` 字典存储累积及其对应的出现次数。 - 遍历过程中不断累加当前元素至 `cur_sum` 中,并检查 `(cur_sum - k)` 是否已存在于字典中。如果存在,则表明找到了若干个满足条件的连续子数组[^4]。 - 时间复杂度主要由单层循环决定,因此整体效率较高。 ### 示例运行 对于输入 `nums = [1, 1, 1]`, `k = 2`: 执行过程如下: - 初始状态:`cur_sum=0`, `result=0`, `count={0: 1}` - 处理第一个数 `num=1`: - 更新 `cur_sum=1` - 检查 `cur_sum-k=-1` 不在 `count` 中 - 更新 `count={0: 1, 1: 1}` - 处理第二个数 `num=1`: - 更新 `cur_sum=2` - 检查 `cur_sum-k=0` 在 `count` 中,增加 `result+=1` - 更新 `count={0: 1, 1: 1, 2: 1}` - 处理第三个数 `num=1`: - 更新 `cur_sum=3` - 检查 `cur_sum-k=1` 在 `count` 中,增加 `result+=1` - 更新 `count={0: 1, 1: 1, 2: 1, 3: 1}` 最终返回结果为 `result=2`[^2]。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值