
Python
Python
Live and learn 6688
OMTM:1 meaningful blog every workday╰(*°▽°*)╯
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
【Python】range()
range()原创 2023-05-11 16:58:19 · 219 阅读 · 0 评论 -
【Python】用一行输出多次循环的结果
一行输多次循环的结果。原创 2023-05-11 16:49:19 · 540 阅读 · 0 评论 -
数据分析:Pandas数据预处理
常见不规整数据主要有: 缺失数据 重复数据 异常数据 1. 缺失值处理 1.1 缺失值查看 Python缺失值一般用NaN表示。 info():可返回每一列的缺失情况。 isnull():判断哪个值是缺失值。如果是缺失值,则返回True。 1.2 缺失值删除 dropna():默认删除有缺失值的行。 只要一行有缺失值,就把整行的值删掉。 dropna(how = “all”):删除空白行,只会删除全为空值的行。 1.3 缺失值填充 一般情况下,只要缺失数据比例不过高,即不超过30%,尽量不删除,原创 2021-10-19 01:13:10 · 754 阅读 · 2 评论 -
数据分析:Pandas获取数据源
Pandas的名称来自于面板数据(panel data)和python数据分析(data analysis)。 3. 熟悉数据 head(n):显示前n行,head()默认显示前5行。 shape():获取数据的行数和列数,结果是元组。 df.shape() 的结果是(4,3),表示df表有4行3列 info():获取整个表中,所有列的数据类型 describe():获取数值分布情况。 count mean std:标准差 min 25% 50% 75% max ...原创 2021-10-18 23:55:13 · 411 阅读 · 0 评论 -
Python:元组、列表和字典
名称 英文 使用符号 是否可修改 元组 tuple 小括号 () 否 列表 list 中括号 [] 是 字典 dict 大括号 {} 是原创 2021-09-11 16:30:36 · 104 阅读 · 0 评论