模拟退火法、神经网络、遗传算法

本文介绍了最优化理论中的经典启发式算法,包括模拟退火法、神经网络(BP网络、感知器网络、单层和多层感知器、线性神经网络)和遗传算法,并提供了相关的matlab程序源代码。文章详细阐述了模拟退火法的伪代码、实际应用,以及遗传算法的主函数、初始函数、适应度计算、复制、交叉和变异过程,旨在为实际问题的求解提供直接可用的模版。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

最优化理论的经典算法

模拟退火法、神经网络、遗传算法是数学建模中常用的启发式算法,这里整合一下模版,并进行一些拓展,方便直接使用

原文:http://blog.csdn.net/qq_34861102/article/details/77806124

一些拓展:

基于模拟退火的遗传算法:
http://blog.csdn.net/qq_34861102/article/details/77899555


模拟退火法

  • 伪代码
/*
* J(y):在状态y时的评价函数值
* Y(i):表示当前状态
* Y(i+1):表示新的状态
* r: 用于控制降温的快慢
* T: 系统的温度,系统初始应该要处于一个高温的状态
* T_min :温度的下限,若温度T达到T_min,则停止搜索
*/
while( T > T_min )
{
  dE = J( Y(i+1) ) - J( Y(i) ) ; 

  if ( dE >=0 ) //表达移动后得到更优解,则总是接受移动
        Y(i+1) = Y(i) ; //接受从Y(i)到Y(i+1)的移动
  else
  {
// 函数exp( dE/T )的取值范围是(0,1) ,dE/T越大,则exp( dE/T )也
        if ( exp( dE/T ) > random( 0 , 1 ) )
        Y(i+1) = Y(i) ; //接受从Y(i)到Y(i+1)的移动
  }
  T = r * T ; //降温退火 ,0<r<1 。r越大,降温越慢;r越小,降温越快
  /*
  * 若r过大,则搜索到全局最优解的可能会较高,但搜索的过程也就较长。若r过小,则搜索的过程会很快,但最终可能会达到一个局部最优值
  */
  i ++ ;
}
  • 实际例子

    • 求解下列非线性规划最优解

          min f(x) = x(1)^2 + x(2)^2 + 8;
      
               s.t.
               x(1)^2 - x(2) >= 0;
               -x(1) - x(2)^2 + 2 = 0;
               x(1),x(2) >=0 
    • 实现代码

      %生成初始解  
      x2=1;  
      x1=2-x2^2;  
      tempx1 = x1;   
      bestx1 = x1;  
      tempx2 = x2;   
      bestx2 = x2;  
      tempans = inf;  
      bestans = inf;  
      figure
      rand('state',sum(clock)); %初始化随机数发生器  
      t=90; %初始温度  
      tf=89.9; %结束温度  
      a = 0.99; %温度下降比例  
      
      while t>=tf%(7)结束条件  
          for r=1:1000 %退火次数  
      
              %产生随机扰动(3)新解的产生  
              x2=x2+rand*0.2;  
              x1=2-x2^2;  
      
              %检查是否满足约束  
              if x1^2-x2>=0 && -x1-x2^2+2==0 && x1>=0 &&x2>=0  
              else  
                  x2=rand*2;  
                  x1=2-x2^2;  
                  continue;  
              end  
      
              %退火过程  
              E_new=x1^2+x2^2+8;%(2)目标函数  
              if E_new<tempans%(5)接受准则  
                      tempans=E_new;  
                      tempx1=x1;  
                      tempx2=x2;  
                      if E_new<bestans  
                          %把冷却过程中最好的解保存下来  
                          bestans=E_new;  
                          bestx1=x1;  
                          bestx2=x2;  
                      end  
              
评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值