RoI Transformer论文翻译详解

文章提出了一种RoITransformer方法,用于解决航空图像中基于水平RoI的目标检测问题,特别是处理密集和定向目标时的不匹配。RoITransformer通过学习空间变换参数,以OBB注释进行监督,改善了RoI与目标的匹配,提高了分类置信度和定位精度。该方法在DOTA和HRSC2016数据集上表现出优越性能,且能轻松集成到现有检测框架中,提升了检测效率和准确性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Learning RoI Transformer for Oriented Object Detection in Aerial Images

0.摘要

航空图像中的目标检测是计算机视觉中一个活跃而又具有挑战性的任务,因为它具有鸟瞰视角、高度复杂的背景和变化的物体外观。特别是在航空图像中检测密集的目标时,基于水平建议的普通目标检测方法往往会导致感兴趣区域(Region of interest, RoIs)与目标之间的不匹配。这就导致了最终目标分类置信度与定位精度之间的常见偏差。在本文中,我们提出了一个RoI Transformer来解决这些问题。RoI Transformer的核心思想是对RoI进行空间变换,并在定向包围框(OBB)注释的监督下学习变换参数。RoI Transformer是轻量级的,可以很容易地嵌入到检测器中,用于定向对象检测。简单地将RoI Transformer应用于light-head RCNN 已经在两个常见且具有挑战性的航空数据集上取得了最先进的性能,即DOTA和HRSC2016,检测速度的降低可以忽略。当定向边界框注释可用时,我们的RoI Transformer超过了可变形的位置敏感 RoI pool-ing。大量的实验也验证了我们的RoI Transformer的灵活性和有效性。

1.介绍

(1)背景
水平框检测会造成边界框和目标的不一致性,尤其是当目标密集分布时。由于航空影像目标方向的多样性,使用有限方向的RRoIs很难与所有的目标都正确匹配,并且多方向的RRoIs还会造成计算的高度复杂性。空间变换、形变卷积和RoI池化常被用来处理几何变形,并且不涉及标注的旋转边界框。在航空影像中,提取具有旋转不变性的区域特征,对于消除区域特征和目标的不匹配问题是非常重要的。

(2)本文研究的主要内容:
提出了RoI Transformer的模块结构,通过标注RRoI的监督学习和基于位置敏感对齐的特征提取,旨在利用双阶段框架实现密集旋转目标的检测。它由两部分组成:
第一个是RRoI学习器,它学习从hroi到RRoI的转换。
第二个是旋转位置敏感RoI Align,从RRoI中提取旋转不变特征,用于后续的对象分类和位置回归。

(3)本文研究的主要贡献:

  • 我们提出了一个有监督的旋转RoI学习器,它是一个可以将水平RoI转换为RoI的可学习模块。该设计不仅可以有效缓解RoIs与对象之间的错位,还可以避免为定向对象检测而设计的大量锚点。
  • 设计了用于空间不变特征提取的旋转位置敏感感兴趣区域对齐模块,可以有效地促进目标分类和位置回归。当使用light
### Transformer论文中文翻译及其内容解读 Transformer是一种基于注意力机制的神经网络架构,最初由Google团队在2017年的论文《Attention is All You Need》中提出[^1]。这篇论文的核心贡献在于摒弃传统的RNN/CNN结构,完全依赖自注意力(Self-Attention)机制来捕捉输入序列中的长期依赖关系。 #### 论文核心概念解析 1. **自注意力机制(Self-Attention Mechanism)** 自注意力机制允许模型在同一时间步关注整个输入序列的不同部分,从而有效捕获全局上下文信息。通过计算Query、Key和Value三者的交互关系,模型能够动态调整权重分配给不同的输入元素[^1]。 2. **位置编码(Positional Encoding)** 由于Transformer不采用循环或卷积操作,因此无法自然获取词序信息。为此,在输入嵌入的基础上加入了位置编码向量,该向量按照特定正弦函数形式定义: \[ PE_{(pos,2i)} = \sin\left(\frac{pos}{10000^{2i/d_{model}}}\right), \] \[ PE_{(pos,2i+1)} = \cos\left(\frac{pos}{10000^{2i/d_{model}}}\right). \] 此方法不仅保留了绝对位置信息,还支持相对距离的学习能力[^3]。 3. **解码器差异分析** 在目标检测领域应用时,如DETR框架下的Decoder设计有所改进。不同于传统机器翻译场景下逐字生成的方式,这里实现了并行输出多个预测框的功能。具体而言,它利用一组预设的对象查询(Object Queries),一次性完成所有候选区域的分类与定位任务[^2]。 4. **整体架构特点总结** 整体来看,Transformer主要由多层堆叠而成的标准Encoder-Decoder模块构成。其中每一层内部均包含两个子层:一个多头注意力机制单元以及一个前馈全连接网络;并且在外围施加残差链接与Layer Normalization技术以促进训练稳定性。 ```python import math import torch from torch import nn class PositionalEncoding(nn.Module): def __init__(self, d_model: int, max_len: int = 5000): super().__init__() pe = torch.zeros(max_len, d_model) position = torch.arange(0, max_len).unsqueeze(1) div_term = torch.exp(torch.arange(0, d_model, 2) * -(math.log(10000.0) / d_model)) pe[:, 0::2] = torch.sin(position * div_term) pe[:, 1::2] = torch.cos(position * div_term) self.register_buffer('pe', pe) def forward(self, x): x = x + self.pe[:x.size(0)].requires_grad_(False) return x ``` 以上代码片段展示了如何实现位置编码功能的一个简单例子。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值