
竞赛方案
文章平均质量分 94
藏晖
这个作者很懒,什么都没留下…
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
CSTrack_panda: 一个针对于十亿像素场景的多目标跟踪Baseline(代码开源和我对该场景的一点看法)
一、简介:PANDA(gigaPixel-level humAN centric video Dataset)是清华大学团队构建的国际上首个动态大场景多对象数据平台,场景平均覆盖平方千米级范围,可同时观测数千人,百米外人脸清晰可识别,视频分辨率近10亿像素。本数据集的目的是吸引更多的计算机视觉研究者关注动态大场景多对象数据处理算法的研究,促使检测、追踪等视觉任务在十亿像素视频数据上得以解决。官网:gigavision.cn论文链接:https://ieeexplore.ieee.org/stamp/s原创 2021-06-06 10:02:11 · 2261 阅读 · 6 评论 -
时间序列分类总结(time-series classification)
时间序列分类总结(time-series classification)一、传统方法(需要手工设计)1、DTW(dynamic time warping)& KNN2、基于特征的方法二、深度学习1、MLP、FCN、ResNet2、LSTM_FCN、BiGRU-CNN3、MC-CNN(multi-channel CNN)、MCNN(multi-scale CNN)参考文献 &nb...原创 2020-02-11 14:54:55 · 66130 阅读 · 8 评论 -
特征转换方法比较(PCA、ICA、LDA)
特征转换方法比较(PCA、ICA、LDA)一、主成分分析(PCA)二、独立成分分析(ICA)三、线性判别分析(LDA)四、异同点比较 随着机器学习和数据科学的发展,大数据的分析与处理在许多领域得到了应用。这通常需要收集很大的数据,并对多维数据进行观测,然而特征越多不仅仅会增加研究者的分析工作量和难度,同...原创 2020-01-19 17:43:54 · 5126 阅读 · 0 评论 -
第五届百度西安交大大数据赛‘划水’队方案 初赛 第9名 复赛 第23名
第一次参加该类型的比赛,发现我们还是和大佬们的差距很大,要学习和提高的地方很多,比赛中的数据分为图像数据和访问数据,由于两边都是刚刚入门,为此都没有改得特别好的成绩,最终未能进入决赛,对一些经验进行总结吧。复赛思路图如下:在复赛中,我们前期花了很多的时间去做单模型的调参和做其他一些无用的实验,浪费了很多的时间来验证这些方法(之后我会简单地把我们做了没有显著效果的实验提出)。在比赛后期发现该比...原创 2019-08-05 14:59:43 · 644 阅读 · 2 评论