spark-streaming消费kafka写hbase代码实战调优

本文介绍了一种使用Spark处理大规模数据的性能优化方案,通过增加Map集合、调整资源配置(如executor-cores、num-executors等)以及开启反压机制,显著提高了处理效率。针对拥有大量分区的topic,该方案确保了数据的高效消费与处理。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1、处理逻辑

通过新增map集合来提升处理性能

2、资源配置

--executor-cores 3 \
--num-executors 5 \
--executor-memory 2G \
--driver-memory 2G \

 

3、测试场景

这个topic有15个分区,并且数据量挺大,所以需要15个core处理,从earliest消费写到测试表,4千万的数据量

第三次测试 spark.streaming.kafka.maxRatePerPartition = 3000 开启反压

每个批次处理4s多,刚好能处理完

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值