1. 原始信号与分帧
在音频信号处理之前,我们生成一个随机信号作为示例。原始信号在时域上表现为波动。为了进行频率分析,我们将信号切分为多个小的时间段,称为帧。每一帧将被单独分析,以便在每个小段时间内假设信号是静态的。
为什么要分帧?
音频信号通常是非平稳的,即信号特性随时间变化。通过将信号切分为小的时间段(帧),我们可以在每一帧内近似认为信号是静态的,从而使频率分析更为准确。这种方法帮助我们捕捉信号在不同时间段的频率特征,便于后续处理和分析。
帧之间的重叠
帧之间的重叠可以减少在分帧处理时可能丢失的边界信息。信号的快速变化可能导致信息的丢失,而通过让帧之间有一定的重叠,我们可以更好地保留信号的连续性和完整性,从而提高频率分析的精度。
2. 分帧信号加窗
在音频信号处理中,分帧是将连续信号切分为若干小时间段(帧),以便于分析。然而,直接对每一帧进行傅里叶变换可能导致频谱泄漏,尤其在帧的边缘,信号值的突变会引入伪影。加窗的主要目的是平滑每一帧的信号,从而减少频谱泄漏。
-
减少频谱泄漏:
在进行傅里叶变换时,假设信号在分析窗口内是周期性的。如果信号在窗口的边缘处发生突变(例如,信号值突然从一个值跳到另一个值),则傅里叶变换会将这种突变视为频率成分,导致频谱中出现伪影。通过施加窗函数,信号在帧的开始和结束处的值逐渐接近于零,从而减少这种突变,降低频谱泄漏的风险。 -
提高频率分辨率:
窗函数的形状直接影响频谱的表现。通过加窗,信号的频率成分能够更好地保留,经过加窗的信号在频域中的表现更加清晰。这使得不同频率成分之间的区分更加有效,尤其是在频率接近的情况下。 -
控制能量分布:
不同的窗函数(如汉明窗、汉宁窗、矩形窗等)具有不同的特性,影响信号在频域中的能量分布。例如,汉明窗和汉宁窗能够有效地减少边缘效应,而矩形窗则可能导致较大的频谱泄漏。选择合适的窗函数可以优化信号处理效果,确保重要频率成分的能量得到适当保留。 -
改善重建效果:
在进行逆变换时,加窗有助于更好地恢复信号的幅度。通过在每一帧上应用窗函数,重建信号时可以有效地修正信号的幅度,从而提高重建的准确性。这对于确保重建信号尽可能接近原始信号至关重要。
重叠确保在帧之间保留更多信号信息,而加窗则平滑每一帧的边缘,减少频谱泄漏。通过结合重叠和加窗,我们能够更有效地分析信号的频率特征,并在后续重建过程中获得更高的准确性。
常见的窗函数
1. 汉明窗(Hamming Window)
w[n]=0.54−0.46cos(2πnN−1),n=0,1,…,N−1 w[n] = 0.54 - 0.46 \cos\left(\frac{2\pi n}{N-1}\right), \quad n = 0, 1, \ldots, N-1 w[n]=0.54−0.46cos(N−12πn),n=0,1,…,N−1
其中:
- ( N ) 是窗的长度。
- ( n ) 是当前样本的索引。
2. 汉宁窗(Hanning Window)
w[n]=12(1−cos(2πnN−1)),n=0,1,…,N−1 w[n] = \frac{1}{2} \left(1 - \cos\left(\frac{2\pi n}{N-1}\right)\right), \quad n = 0, 1, \ldots, N-1 w[n]=21(1−cos(N−12πn)),n=0,1,…,N−1
其中:
- ( N ) 是窗的长度。
- ( n ) 是当前样本的索引。
3. 矩形窗(Rectangular Window)
公式:
矩形窗的公式为:
w[n]=1,n=0,1,…,N−1 w[n] = 1, \quad n = 0, 1, \ldots, N-1 w[n]=1,n=0,1,…,N−1
其中:
-
( N ) 是窗的长度。
-
( n ) 是当前样本的索引。
-
汉明窗 和 汉宁窗 都是加窗处理的常用窗函数,能够有效减少频谱泄漏,且在频域分析中表现良好。
-
矩形窗 不进行加窗处理,直接使用帧信号,但容易导致频谱泄漏,因此在实际应用中应谨慎使用。
下面是对分帧信号,应用汉明窗的结果。
3. 短时傅里叶变换(STFT)
短时傅里叶变换(STFT)将每一帧信号转换到频域,从而提取频率特征。通过对加窗后的帧进行傅里叶变换,我们能够观察信号在时间和频率上的变化,获得频谱信息。
对于每一帧的信号 ( x[n] ),我们对其应用窗函数 ( w[n] ) 后进行傅里叶变换,得到频域表示。具体公式为:
X[k]=∑n=0N−1x[n]w[n]e−j2πNkn X[k] = \sum_{n=0}^{N-1} x[n] w[n] e^{-j \frac{2\pi}{N} kn} X[k]=n=0∑N−1x[n]w[n]e−jN2πkn
其中:
- ( X[k] ) 是第 ( k ) 个频率分量的复数值。
- ( x[n] ) 是当前帧的时域信号。
- ( w[n] ) 是窗函数(如汉明窗或汉宁窗)。
- ( N ) 是窗的长度。
- ( j ) 是虚数单位。
在代码中,这一过程对应于以下行:
spectrum = np.fft.fft(windowed_frame)
4. 逆短时傅里叶变换(ISTFT)
逆短时傅里叶变换(ISTFT)是将频域信息转换回时域的过程。通过对每一帧的频谱进行逆变换,我们可以重建信号。为了保证加窗后,首尾帧信号的完整性,需要在首、尾各自填充 1 帧静音信号。
在重建信号时,我们对频域信号进行逆变换,得到时域信号。具体公式为:
x[n]=1N∑k=0N−1X[k]ej2πNkn
x[n] = \frac{1}{N} \sum_{k=0}^{N-1} X[k] e^{j \frac{2\pi}{N} kn}
x[n]=N1k=0∑N−1X[k]ejN2πkn
其中:
- ( x[n] ) 是重建的时域信号。
- ( X[k] ) 是频域信号的复数值。
- ( N ) 是窗的长度。
在代码中,这一过程对应于以下行:
reconstructed_frame = np.fft.ifft(spectrum).real
5. 重建原始信号并正确处理重叠部分
OLA(Overlap-Add,重叠加法)是一种常用的信号处理技术,主要用于将分帧处理的信号重建为完整信号。对于每一帧,将其加到重建信号的相应位置,并考虑重叠部分的处理。
reconstructed_signal = np.zeros(all_samples)
for i in range(all_num_frames):
start = i * hop_length
reconstructed_signal[start:start + frame_length] += reconstructed_frames[i] /n
对于汉宁窗(Hanning window),如果帧移(hop length)等于帧长的一半,那么在重建信号时,可以直接叠加每一帧的信号,也就是 n=1。
对于汉宁窗(Hanning window),如果帧移(hop length)等于帧长的1/4,那么在重建信号时,叠加后的信号需要乘以 1/2,,也就是 n=2。
完整代码
import matplotlib.pyplot as plt
import numpy as np
# 生成信号
sr = 16000 # 采样率
signal_duration = 0.04 # 持续时间(0.04秒)
signal_samples = int(sr * signal_duration) # 样本数
y = np.random.randn(signal_samples) # 生成均值为0,标准差为1的随机信号
frame_length = 320 # 帧长度
hop_length = 160 # 帧之间的跳跃长度
num_frames = (len(y) - frame_length) // hop_length + 1
frames = np.array([y[i * hop_length:i * hop_length + frame_length] for i in range(num_frames)]).T
# 使用窗函数(汉明窗)
window = np.hanning(frame_length)
# 原始信号
plt.figure(figsize=(12, 2 * (num_frames + 1)))
plt.subplot(num_frames + 1, 1, 1)
t = np.linspace(0, signal_duration, signal_samples)
plt.plot(t, y, label='Original Signal', color='blue')
plt.xlabel('Time (s)')
plt.ylabel('Amplitude')
plt.legend()
plt.xlim(0, signal_duration)
plt.ylim(-3, 3) # 设置 y 轴范围
# 绘制切分的帧
for i in range(num_frames):
plt.subplot(num_frames + 1, 1, i + 2) # 从第二个子图开始
t_start = i * hop_length / sr
t_end = t_start + frame_length / sr
t_frame = np.linspace(t_start, t_end, frame_length)
# 绘制帧
plt.plot(t_frame, frames[:, i], alpha=0.7, label=f'Frame {i + 1}', linestyle='--')
plt.ylabel('Amplitude')
plt.legend()
plt.xlim(0, signal_duration)
plt.ylim(-3, 3) # 设置 y 轴范围
# 绘制切分的帧加窗后的信号
plt.figure(figsize=(12, 2 * (num_frames + 1)))
plt.subplot(num_frames + 1, 1, 1)
plt.plot(t, y, label='Original Signal', color='blue')
plt.xlabel('Time (s)')
plt.ylabel('Amplitude')
plt.legend()
plt.xlim(0, signal_duration)
plt.ylim(-3, 3) # 设置 y 轴范围
for i in range(num_frames):
plt.subplot(num_frames + 1, 1, i + 2) # 从第二个子图开始
# 应用窗函数
windowed_frame = frames[:, i] * window
t_start = i * hop_length / sr
t_end = t_start + frame_length / sr
t_frame = np.linspace(t_start, t_end, frame_length)
# 绘制加窗后的信号
plt.plot(t_frame, windowed_frame, alpha=0.7, label=f'Hanning Windowed Frame {i + 1}', linestyle='--')
plt.ylabel('Amplitude')
plt.legend()
plt.xlim(0, signal_duration)
plt.ylim(-3, 3) # 设置 y 轴范围
# 绘制加窗后每个帧的频谱
plt.figure(figsize=(12, 2 * (num_frames + 1)))
for i in range(num_frames):
plt.subplot(num_frames, 1, i + 1) # 每个帧的频谱
# 应用窗函数
windowed_frame = frames[:, i] * window
# 计算 FFT
spectrum = np.fft.fft(windowed_frame)
freqs = np.fft.fftfreq(len(spectrum), 1 / sr)
# 绘制频谱
plt.plot(freqs[:len(freqs) // 2], np.abs(spectrum)[:len(spectrum) // 2], alpha=0.7,
label=f'Spectrum of Hanning Windowed Frame {i + 1}')
plt.ylabel('Magnitude')
plt.xlim(0, sr / 2) # 只显示到 Nyquist 频率
plt.legend()
plt.xlabel('Frequency (Hz)')
padding_duration = 0.01
padding_samples = int(sr * padding_duration)
y_padding = np.pad(y, (padding_samples, padding_samples), mode='constant', constant_values=0)
all_duration = signal_duration + padding_duration * 2
all_samples = signal_samples + padding_samples * 2
all_num_frames = (len(y_padding) - frame_length) // hop_length + 1
all_frames = np.array([y_padding[i * hop_length:i * hop_length + frame_length] for i in range(all_num_frames)]).T
# 绘制每一帧加窗的重建信号
plt.figure(figsize=(12, 1.5 * (all_num_frames + 1))) # 增加子图的高度
reconstructed_frames = []
for i in range(all_num_frames):
plt.subplot(all_num_frames, 1, i + 1) # 每个帧的重建信号
t_start = i * hop_length / sr
t_end = t_start + frame_length / sr
t_frame = np.linspace(t_start, t_end, frame_length)
windowed_frame = all_frames[:, i] * window
spectrum = np.fft.fft(windowed_frame)
freqs = np.fft.fftfreq(len(spectrum), 1 / sr)
reconstructed_frame = np.fft.ifft(spectrum).real
reconstructed_frames.append(reconstructed_frame)
# 绘制重建后的信号
plt.plot(t_frame, reconstructed_frame, alpha=0.7,
label=f'Reconstructed Hanning Windowed Frame {i + 1} After Padding',
linestyle='--')
plt.ylabel('Amplitude')
plt.legend()
plt.xlim(0, all_duration)
plt.ylim(-3, 3) # 设置 y 轴范围
plt.xlabel('Time (s)')
#
# 利用窗函数重建完整信号
reconstructed_signal = np.zeros(all_samples)
for i in range(all_num_frames):
start = i * hop_length
reconstructed_signal[start:start + frame_length] += reconstructed_frames[i]
# 10. 可视化重建的完整信号
plt.figure(figsize=(12, 6))
plt.subplot(2, 1, 1)
plt.plot(np.linspace(0, signal_duration, signal_samples), y_padding[padding_samples:-padding_samples],
label='Original Signal', color='blue', alpha=0.5)
plt.xlabel('Time (s)')
plt.ylabel('Amplitude')
plt.legend()
plt.xlim(0, signal_duration)
plt.subplot(2, 1, 2)
plt.plot(np.linspace(0, signal_duration, signal_samples), reconstructed_signal[padding_samples:-padding_samples],
label='Reconstructed Signal', color='orange')
plt.xlabel('Time (s)')
plt.ylabel('Amplitude')
plt.legend()
plt.xlim(0, signal_duration)
plt.tight_layout()
# 对比重建信号与原始信号的差异
plt.figure(figsize=(12, 6))
plt.plot(np.linspace(0, signal_duration, signal_samples),
y_padding[padding_samples:-padding_samples] - reconstructed_signal[padding_samples:-padding_samples],
label='Difference', color='red', alpha=0.7)
plt.xlabel('Time (s)')
plt.ylabel('Amplitude Difference')
plt.title('Difference between Original and Reconstructed Signal')
plt.xlim(0, signal_duration)
plt.ylim(-3, 3) # 设置 y 轴范围
plt.legend()
plt.tight_layout()
plt.show()