目录
(2)根据自己显卡支持的CUDA版本,下载对应的CUDA版本
(4)配置环境变量(安装好CUDA后,系统一般会自动添加环境变量)
(1)cuDNN是pytorch搭建深度学习模型的依赖,没有它,不能运行卷积等操作。
(1)进入pytorch,选择相应的OS、package、CUDA版本
1、安装NVIDIA显卡驱动
(1)首先确定自己是否有NVIDIA显卡,如果没有可以关页面了;
(2)一般装了系统都有NVIDIA显卡驱动;如果没有,可以点击下面的下载地址;
下载地址:http://www.nvidia.cn/Download/index.aspx?lang=cn,注意笔记本一般选择notebooks。
2、安装CUDA
(1)确定显卡支持的CUDA版本
NVIDIA控制面板—帮助—系统信息—组件,就可以看到显卡支持的CUDA版本(我的PC支持的CUDA是11.0的),具体操作见下图:
(2)根据自己显卡支持的CUDA版本,下载对应的CUDA版本
下载地址:https://developer.nvidia.com/cuda-toolkit-archive
(3)安装CUDA
选择“自定义”安装,后面的操作见下图(只勾选CUDA里面部分选项,其他都不用选择)
(4)配置环境变量(安装好CUDA后,系统一般会自动添加环境变量)
如果系统没有自动添加环境变量,则在系统变量中的"path"加入:
C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.1\bin
C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.1\libnvvp
注意前面的路径(C:\Program Files\NVIDIA GPU Computing Toolkit)要换成自己的路径
(5)检验CUDA安装是否成功
在cmd中运行“nvcc -V”,如果出现下面的提示,恭喜你,成功安装CUDA!
3、安装cuDNN
(1)cuDNN是pytorch搭建深度学习模型的依赖,没有它,不能运行卷积等操作。
(2)下载对应版本的cuDNN
- 如果你的CUDA是10.0,则cuDNN也要选择 cuDNN v.. for CUDA 10.0。
- 下载地址:https://developer.nvidia.com/rdp/cudnn-archive
(3)下载的时候,可能需要注册一个账号
(4)安装cuDNN
将下载的cuDNN解压,并且将解压的内容(包括bin、include、lib文件夹,NVIDIA_SLA_cuDNN_Support.txt)复制到CUDA的路径:C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.1(注意要换成自己的安装路径)
4、安装pytorch、torchvision
(1)进入pytorch,选择相应的OS、package、CUDA版本
a、本文选择的pytorch=1.7.0(stable),CUDA=11.0,具体见下图。
b、在cmd中键入:pip install torch===1.7.0+cu110 torchvision===0.8.1+cu110 torchaudio===0.7.0 -f https://download.pytorch.org/whl/torch_stable.html
c、网页地址:https://pytorch.org/get-started/locally/
(2)如果出现错误,可以选择下载离线的安装包。
下载地址:https://download.pytorch.org/whl/torch_stable.html,下载以下安装包
torch-1.7.0+cu110-cp37-cp37m-win_amd64.whl
torchvision-0.8.1+cu110-cp37-cp37m-win_amd64.whl
torchaudio-0.7.0-cp37-none-win_amd64.whl
注意:cu110表示CUDA是11.0版本的,cp37表示python3.7,win表示windows版本,具体选择什么版本,可以参考上图中的“Run this Command”。
安装方法:进入离线安装包所在位置,然后“shift+鼠标右键”,然后选择“在此处打开powershell窗口”,最后输入“pip install torch-1.7.0+cu110-cp37-cp37m-win_amd64.whl”,即输入“pip install xxxx.whl”。
有可能会出现[winError]拒绝访问的错误提示,并且要求你添加“--user”,你可以这样输入:"pip install xxxx.whl --user"
5、检验是否安装好pytorch, torchvision
进入python环境
(1)import torch
如果出现这个错误,ImportError: numpy.core.multiarray failed to import,则很可能你的numpy版本太旧啦;具体如下图
解决办法1:(1)卸载numpy,然后重新安装numpy;
(2)cmd中键入如下命令:pip uninstall numpy
pip install numpy
解决办法2:pip install --upgrade numpy
(2)import torchvision
如果出现这个错误,from . import _imaging as core ImportError: DLL load failed: 找不到指定的模块。则很可能你的pillow版本太旧啦,具体如下图
解决办法1:(1)卸载pillow,然后重新安装pillow;
(2)cmd中键入如下命令:pip uninstall pillow
pip install pillow
解决办法2:pip install --upgrade pillow
(3)查看pytorch版本
import torch
print(torch.__version__)
(4)检验是否成功安装CUDA
import torch
print(torch.cuda.is_available()) # 返回True,则成功安装cuda
(5)检验是否成功安装cuDNN
from torch.backends import cudnn
print(cudnn.is_available()) # 返回True,则说明成功安装cuDNN
参考链接
1.https://blog.csdn.net/qq_36653505/article/details/81368346