spark-sql 方差和标准差

本文在spark-shell环境中探讨如何使用Spark SQL内置函数计算数据的方差和标准差。首先展示了求age平均值的方法,然后介绍了自定义UDF(用户定义函数)的创建与注册过程,接着通过示例演示了方差的计算,最后讲解了如何获取标准差。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

运行环境spark-shell

val p=spark.read.json("file:///root/spark-2.1.1-bin-hadoop2.7/examples/src/main/resources/people.json")

p.show

方差和标准差
1. 求age平均值

import spark.sql
val avgvule= sql("select avg(age) from people").collect.apply(0) (0).asInstanceOf[Double]

2.udf的函数

def sub
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值