libtorch waternet水下图像增强模型和基准数据集

文章介绍了水下图像增强的重要性和现有算法的局限性,提出了一个包含950张真实水下图像的UIEB基准数据集,用于评估和训练模型。Water-Net是基于此数据集训练的网络,展示了CNN在水下图像增强的潜力。作者还分享了数据集和libtorch模型代码供研究使用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

        水下图像增强由于其在海洋工程和水上机器人领域的重要性而备受关注。在过去的几年里,人们提出了许多水下图像增强算法。然而,这些算法主要使用合成数据集或少数选定的真实世界图像进行评估。因此,目前还不清楚这些算法如何处理在野外获取的图像,以及我们如何衡量该领域的进展。为了弥补这一差距,我们首次使用大规模真实世界图像对水下图像增强进行全面的感知研究和分析。

        在本文中,我们构建了一个水下图像增强基准(UIEB),包括 950 张真实水下图像,其中 890 张具有相应的参考图像。我们将其余60幅无法获得满意参考图像的水下图像视为具有挑战性的数据。使用该数据集,我们对最先进的水下图像增强算法进行定性和定量的全面研究。此外,我们提出了一个在此基准上训练的水下图像增强网络(称为 Water-Net)作为基线,这表明了所提出的 UIEB 用于训练卷积神经网络(CNN)的泛化。基准评估和提出的 Water-Net 展示了最先进算法的性能和局限性,这为水下图像增强的未来研究提供了线索。我们对最先进的水下图像增强算法进行定性和定

水下图像处理研究中,获取合适的浑浊水下图像数据集对于算法开发性能评估至关重要。以下是一些可用于研究的浑浊水下图像数据集及相关信息: ### LSUI 数据集 LSUI(Large-scale Underwater Image dataset)是一个大型的水下图像数据集,由研究人员在2021年发布[^1]。该数据集专为水下图像增强任务设计,包含大量模糊、低对比度低分辨率的水下图像。这些图像涵盖了多种水下环境场景,适用于测试验证图像增强算法的有效性。 ### TU-SDN 数据集 TU-SDN(Turbid Underwater Synthetic Degradation Network)是一个合成的浑浊水下图像数据集,主要用于评估去雾增强算法。该数据集通过模拟浑浊水下环境生成,包含清晰图像对应的浑浊图像对,便于监督学习任务。 ### UIEB 数据集 UIEB(Underwater Image Enhancement Benchmark)是一个广泛使用的水下图像增强基准数据集。它包含真实拍摄的水下图像以及经过处理的增强图像,适合用于评估不同增强方法的性能。虽然该数据集不专门针对浑浊环境,但其中包含的多种水下场景可用于相关研究。 ### CUIE 数据集 CUIE(Challenging Underwater Image Enhancement)数据集专门针对具有挑战性的水下图像增强任务,包括浑浊、低光照颜色失真等场景。该数据集包含多个真实世界拍摄的图像,并提供增强后的参考图像,适合用于训练测试深度学习模型。 ### 基于 GAN 的浑浊图像增强数据集 一些研究项目使用生成对抗网络(GAN)生成浑浊水下图像,以补充真实数据的不足[^4]。这些合成数据集通常包含清晰图像与对应的浑浊图像对,可用于训练端到端的增强模型。 ### 使用建议 - **数据预处理**:在使用这些数据集时,通常需要进行归一化、去噪颜色校正等预处理步骤。 - **数据增强**:为了提高模型泛化能力,可以使用旋转、翻转、裁剪等数据增强技术。 - **模型评估**:建议使用 PSNR、SSIM UIQM 等指标评估增强效果。 ### 示例代码:加载图像数据集(使用 PyTorch) ```python import torch from torch.utils.data import Dataset from torchvision import transforms from PIL import Image import os class UnderwaterDataset(Dataset): def __init__(self, root_dir, transform=None): self.root_dir = root_dir self.transform = transform self.image_files = os.listdir(root_dir) def __len__(self): return len(self.image_files) def __getitem__(self, idx): img_path = os.path.join(self.root_dir, self.image_files[idx]) image = Image.open(img_path).convert('RGB') if self.transform: image = self.transform(image) return image # 示例:加载数据集 transform = transforms.Compose([ transforms.Resize((256, 256)), transforms.ToTensor() ]) dataset = UnderwaterDataset(root_dir='path_to_dataset', transform=transform) dataloader = torch.utils.data.DataLoader(dataset, batch_size=4, shuffle=True) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

CVer儿

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值