论文链接:https://arxiv.org/abs/1912.1203
摘要
点云学习因其在计算机视觉、自动驾驶、机器人等领域的广泛应用而受到越来越多的关注。深度学习作为人工智能的主流技术,已经成功地应用于解决各种二维视觉问题。然而,由于用深度神经网络处理点云所面临的独特挑战,点云的深度学习仍处于起步阶段。最近,关于点云的深入学习变得更加繁荣,有许多方法被提出来解决这一领域的不同问题。
为了促进未来的研究,本文综述了点云深度学习方法的最新进展。它包括三个主要任务,包括三维形状分类、三维目标检测与跟踪和三维点云分割。它还提供了几个公开数据集的比较结果,以及富有洞察力的观察和启发未来的研究方向。
Introduction
随着3D采集技术的快速发展,3D传感器变得越来越可用且价格实惠,包括各种类型的3D扫描仪、激光雷达和RGB-D相机(如Kinect、RealSense和Apple深度相机)。这些传感器获取的三维数据可以提供丰富的几何、形状和比例信息。借助于二维图像,三维数据为更好地了解机器周围环境提供了机会。三维数据在不同领域有着广泛的应用,包括自动驾驶、机器人技术、遥感和医疗。