一、HDFS前言
设计思想:
分而治之:将大文件、大批量文件,分布式存放在大量服务器上,以便于采取分而治之的方式对海量数据进行运算分析
在大数据系统中作用:
为各类分布式运算框架(如:mapreduce,spark,tez,……)提供数据存储服务
二、HDFS介绍
HDFS(Hadoop Distributed File System)是Hadoop项目的核心子项目,是分布式计算中数据存储管理的基础,是基于流数据模式访问和处理超大文件的需求而开发的,可以运行于廉价的商用服务器上。它所具有的高容错、高可靠性、高可扩展性、高获得性、高吞吐率等特征为海量数据提供了不怕故障的存储,为超大数据集(Large Data Set)的应用处理带来了很多便利。
首先,它是一个文件系统,用于存储文件,通过统一的命名空间——目录树来定位文件
其次,它是分布式的,由很多服务器联合起来实现其功能,集群中的服务器有各自的角色(namenode 、datanode 、secondarynamenode);
重要特性如下:
- HDFS中的文件在物理上是分块存储(block),块的大小可以通过配置参数( dfs.blocksize)来规定,默认大小在hadoop2.x版本中是128M,老版本中是64M
- HDFS文件系统会给客户端提供一个统一的抽象目录树,客户端通过路径来访问文件,形如:hdfs://namenode:port/dir-a/dir-b/dir-c/file.data
- 目录结构及文件分块位置信息(元数据)的管理由namenode节点承担,----namenode是HDFS集群主节点,负责维护整个hdfs文件系统的目录树,以及每一个路径(文件)所对应的block块信息(block的id,及所在的datanode服务器)
- 文件的各个block的存储管理由datanode节点承担---- datanode是HDFS集群从节点,每一个block都可以在多个datanode上存储多个副本(副本数量也可以通过参数设置dfs.replication)
- HDFS是设计成适应一次写入,多次读出的场景,且不支持文件的修改
(注:适合用来做数据分析,并不适合用来做网盘应用,因为,不便修改,延迟大,网络开销大,成本太高)
HDFS优点
1.高容错性
- 数据自动保存多个副本。它通过增加副本的形式,提高容错性
- 某一个副本丢失以后,它可以自动恢复
2.适合批处理
- 它是通过移动计算而不是移动数据
- 它会把数据位置暴露给计算框架。
3.适合处理大数据
- 处理数据达到 GB、TB、甚至PB级别的数据。
- 能够处理百万规模以上的文件数量,数量相当之大。
- 能够处理10K节点的规模
4.流式文件访问
- 一次写入,多次读取。文件一旦写入不能修改,只能追加(这是算缺点吗)。
- 它能保证数据的一致性(通过校验机制)
5.可构建在廉价机器上
- 它通过多副本机制,提高可靠性。
- 它提供了容错和恢复机制。比如某一个副本丢失,可以通过其它副本来恢复。
HDFS 缺点
1.低延时数据访问
- 比如毫秒级的来存储数据,这是不行的,它做不到。
-
它适合高吞吐率的场景,就是在某一时间内写入大量的数据。但是它在低延时的情况下是不行的,比如毫秒级以内读取数据,这样它是很难做到的。
HDFS是单Master的,所有的对文件的请求都要经过它,当请求多时,肯定会有 延时。
2.小文件存储
- 存储大量小文件的话,它会占用 NameNode大量的内存来存储文件、目录和块信息(元信息)。这样是不可取的,因为NameNode的内存总是有限的。
- 小文件存储的寻道时间会超过读取时间,它违反了HDFS的设计目标。
3、并发写入、文件随机修改
- 一个文件只能有一个写,不允许多个线程同时写。
- 仅支持数据 append(追加),不支持文件的随机修改。
三、针对HDFS缺点可能的改进措施
高延迟问题:
使用缓存或多master设计可以降低client的数据请求压力,以减少延时。
存储小文件问题:
1、利用SequenceFile、MapFile、Har等方式归档小文件,这个方法的原理就是把小文件归档起来管理,HBase就是基于此的。对于这种方法,如果想找回原来的小文件内容,那就必须得知道与归档文件的映射关系。
2、横向扩展,一个Hadoop集群能管理的小文件有限,那就把几个Hadoop集群拖在一个虚拟服务器后面,形成一个大的Hadoop集群。google也是这么干过的。
3、多Master设计,正在研发中的GFS II也要改为分布式多Master设计,还支持Master的Failover,而且Block大小改为1M,有意要调优处理小文件。(Alibaba DFS的设计,也是多Master设计,它把Metadata的映射存储和管理分开了,由多个Metadata存储节点和一个查询Master节点组成。)