基于BiLstm-Crf的文本实体抽取(附pytorch代码)

本文介绍了基于BiLSTM-CRF的文本实体抽取,将实体抽取任务视为分类问题,利用BIO标注法对每个字进行分类。通过引入CRF层,考虑前后字之间的关系,提高实体识别准确性。BiLSTM-CRF模型结构结合了双向LSTM和CRF,通过动态规划的维特比算法确定最佳标注序列。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

实体抽取

实体抽取主要任务就是给定一段文本,从中抽取出实体类单词,实体类单词如人名、地名、组织名、时间等名词性单词,在具体的代码实现中,我们都是事先定义抽取哪几类实体单词,这个根据具体的训练数据集而定,比如人民日报数据集中,定义了人名、地点名、组织名三类实体,在模型训练完成之后,我们的任务就是对输入的句子进行三类实体单词的抽取,并识别出单词具体属于那一类实体。在这里插入图片描述
通过上面的介绍,我们会发现这个任务就是一个分类任务,对于中文,在代码实现上,我们是对每个字进行分类。

只有一个词才属于一个实体类别,一个字怎么分类呢。首先我们要对文本中每个字进行标注,标注法有BIO、BMEO等标注法。BIO标注法中,B代表每个实体类单词的开始字,I代表此实体的其它字部分,O代表非实体字部分,这样每个字就可以进行分类了。

示例如下:

我  O
爱  O
北  B
京  I
天  I
安  I
门  I
。  O

但这样无法区分每个单词具体属于哪个实体,所以通常我们标注时会更加具体一点,如下:

我  O
爱  O
北  B-LOC
京  I-LOC
天  I-LOC
安  I-LOC
门  I-LOC
。  O
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值