关系分类论文解读笔记-1

AAAI-2021 NLP关系分类论文:Progressive Multitask Learning with Controlled Information Flow for Joint Entity and Relation Extraction

1.Introduction

之前的MTL模型仅利用共享表示(the shared representation)所捕获的隐式交互。我们对任务的理解是,一些相关任务的输出之间确实存在相关性,例如实体识别和关系分类任务。我们的贡献可总结如下:

  • 我们提出了一个渐进的多任务学习模型(PEMI ),它利用早期预测的交互来改进特定于任务的表示;
  • 我们的模型使用随机映射来编码人物之间的共享表示和来自任务的早期预测(early prediction);
  • 以联合实体识别与关系提取为具体实例,将所提出的方法应用于该联合方法。在多个基准数据集上的大量实验表明了该方法的有效性。

2.Related Work

Multitask Learning

(简介ML):目前提出的多任务学习体系结构可以按照拓扑结构(topologocal structure)进行分类:平面结构(flat structure),图结构(graph structure),层次结构(hierarchical sttucture)

Joint Enity and Relation Extraction

传统的实体和关系提取任务的解决方法是基于两步流水线(two-step pipeline-based)的方法。然而,这些方法面临着从实体识别任务到关系分类任务的错误传播,不能充分利用两个任务之间的交互作用。而多任务学习思想善于发现相关任务间的内在联系。

3.Method

Progressive Classification on Single Task Learning

在这里插入图片描述

  1. Figure 1(A):X表示输入随机变量(如句子),Y表示输出随机变量(如类别标签)。我们采用BiLSTM从X中提取上下文表示H,分类模型定义为从H到p(Y)的映射:C : H—>p(Y)。
  2. Figure 1(B):改进H的表示。使用一个分类器C’,它以H为输入,产生早期预测(early prediction)Y’,就相当于输出值Y的近似值。因此,Y’可以提供一些关于Y的信息,这些信息可作为H的附加信息去提取更具表现力的表示T。在这个模型架构中,我们在H和Y’中都应用的多层感知器(MLP)来学习T的表示。
  3. Figure 1©:实验表明Y’确实能提高H的表示能力,但是不是所有Y’包含的信息对于模型表现都是有利的。因此有必要控制Y’的信息流。具体来说,我们构造了一个随机映射(stochastic map,SM)来建模以Y’为条件的H和T之间的互信息,记为I(H;T|Y’)。这样,我们就可以通过控制I(H;T|Y’)的优化来控制Y’的信息流。I(H;T|Y’)值很小就意味着T很大程度上由Y’决定,值很大就意味着T很大程度上由H决定。
Progressive Classification on Multitask Learning

在这里插入图片描述
Figure 2(A) 没有显式的建模交互,只利用了H中的隐式交互,如此,多任务学习模型不能正确地区分单个任务之间的相关特征。为了解决这个问题,我们观察到几个任务的输出间存在相关性。假设我们有多个任务的早期预测。我们可以利用这些交互来改进特定任务的表示。因此,一个自然的想法是有条件的MI项应该在YA’和YB’条件下,如(H;TA|YA’;YB’)和I(H;TB|YA’;YB’)。

Our Model for the Joint ER and RC Tasks

在这里插入图片描述

  1. Learning a shared representation:首先将单词序列s映射到向量集合x={x1,x2,…,xn},xi是R维的词向量。X是表示句子s初始向量对应的随机变量X。利用BiLSTM为ER何RC任务构造一个共享表示H。
  2. Learning task-specific representations:利用ER与RC任务输出间的相关性构造互信息I(H; Te|Ye’; Yr’) 和
    I(H; Tr|Ye’; Yr’),其中Te,Tr相当于上图的TA,TB,其他以此类推,我们通过最小化互信息来控制到Te和Tr的信息流。
  3. Task-specific classification:(公式太多了,不想看了)。。。

4.Experiment

Datasets:

在这里插入图片描述

Evaluation Protocols

the Precision, Recall and micro-F1 performance of our models on the datasets

Implementation Details

使用Glove或者BERT初始化词向量。基于BERT的模型直接使用BERT嵌入作为H。Glove模型的batch size设置为50,BERT模型min-batch设置为6…

Performance Comparison

将我们的模型与seq2seq模型如OneDecoder,MultiDecoder,OrderRL,序列标注模型如NovelTagging,ReHession,PA-LSTM-CRF,HRL,CASREL,还有多任务学习模型如SPTree,GraphRel,CopyMTL进行比较。我们将一个基本的MTL模型作为基线,MTL直接将H传递给分类器Ce和Cr的分类。
PS:MTL, PMEI是以Glove标注的模型,有BERT下标是以BERT标注的模型。
在这里插入图片描述
在这里插入图片描述

5.Conclusion

我们模型的核心是我们学习数据分类表示的方式,这通常是每个监督学习框架的核心任务。在本文中,我们承认相关任务的输出之间存在相关性,并通过个体任务早期预测的相互作用来利用这些相关性。以前的研究已经考虑了这种方法来改善表示法学习,但是他们通过通过这些早期的预测,以及通过确定性映射的输入表示法来做到这一点。在我们的方法中,**我们将随机映射作为一种方式去捕捉特定任务的表示。同时,我们控制了早期预测的信息流,以确保能够提取出良好的任务特定表示进行监督。**通过这种方式,我们逐步对单个任务做出预测。在多个基准数据集上的大量实验表明了该方法的有效性。

<think>好的,我需要处理用户的查询,他们想要了解如何解读论文或者论文的详细解析方法。首先,我得明确用户的需求,可能是学生或研究人员在学术写作或阅读时需要指导。 根据任务要求,得先调用网络搜索工具来查找相关资料。可能的关键词包括“论文解读方法”、“如何分析学术论文”、“论文解析步骤”等。需要确保覆盖有效的方法论,比如结构分析、重点部分识别、批判性思维的应用等。 接下来,整合搜索到的信息。通常,论文解读的方法包括预览结构、深入阅读各部分、做笔记、验证结论和交叉引用。每个步骤需要详细说明,比如在阅读摘要时抓住核心问题,方法部分关注实验设计,结果部分区分数据与解释等。同时,要强调批判性评估,比如检查方法的合理性和结论的逻辑性。 注意格式要求,避免使用第一人称和步骤词汇。需要分点说明,每个方法或步骤之间换行。如果有代码或公式,要按规范格式,但这个问题可能不太涉及这些内容。 最后,生成相关问题部分,必须基于用户的问题和回答内容。可能的问题包括论文结构分析工具推荐、提升批判性阅读的方法、高效笔记技巧等。要确保三个问题,并且格式正确,标题在同一行,使用规定的符号。 需要检查所有要求是否满足:整合检索内容,分点清晰,无第一人称,正确的问题部分格式。确保回答实用且可操作,帮助用户系统化地解读论文。</think>针对论文解读与解析的实践方法可分为系统性阅读和批判性分析两个维度。下列方法结合了学术阅读规范和科研实践经验: **结构拆解法** 论文标准结构包含摘要、引言、方法、结果、讨论等模块。解读时建议采用分层阅读策略: - 摘要部分提取研究问题、方法创新点、核心结论(建议用时占比10%) - 引言部分追溯研究背景与理论缺口(建议用时占比20%) - 方法章节分析实验设计合理性,重点关注样本选择标准、变量控制方法、统计工具 - 结果部分区分原始数据与作者解释,注意图表中显著性标记(如$p<0.05$) - 讨论章节对比前人研究,识别结论推导逻辑链 **关键要素标注系统** 建立符号体系标记重点内容: - 红色:核心假设与研究问题 - 蓝色:方法论创新点 - 绿色:争议性结论或未验证推测 - 黄色:可复用的实验设计模板 **论证有效性评估矩阵** 创建包含以下维度的评估表格: | 评估维度 | 评分标准(1-5分) | 备注 | |----------------|------------------|------| | 理论框架完整性 | | | | 数据支撑强度 | | | | 方法可复现性 | | | | 结论推广价值 | | | **可视化解析工具** 使用思维导图软件构建论文逻辑关系图,推荐采用分层结构: ``` 理论背景 ├─已有研究 └─研究缺口 方法论 ├─实验设计 └─数据分析 结论网络 ├─直接推论 └─潜在应用 ``` **批判性阅读技巧** - 识别作者预设:通过文献综述引用模式分析学术立场 - 验证数据三角测量:检查是否采用多源数据相互验证 - 评估效应量而非仅关注统计显著性,计算$d=\frac{\mu_1-\mu_2}{\sigma}$等指标 - 追踪参考文献中的对立观点
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值