Colab训练yolov4

本文介绍了如何在Colab上使用PyTorch训练YOLOv4模型。提供了yolov4的源码下载链接和数据预处理步骤,包括修改数据文件路径和生成.text文件。模型配置涉及修改cfg文件,调整卷积核数和anchors。训练过程可以利用Colab的Tensorboard进行可视化,并给出了训练时的注意事项。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

yolov4源码及数据链接

pytorch版yolov4链接:https://pan.baidu.com/s/1tI_jQwcfTGQ0DJQl-n-G5Q
提取码:82rt
草莓数据来源https://bingxiong.vip/?p=18438

数据预处理

1.源码需要图片文件及相应csv标签文件。
2. 修改data_make.py 把指向图片文件夹路径及csv标签文件路径修改成自己的路径`

root = r'home/dirve/MyDrive/images'
labels = os.path.join(root, 'labels.csv')
  1. 修改解析csv文件的相应代码,运行后生成程序需要的训练及测试的.text文件

模型配置及参数修改

1.源码中模型基于darknet构建,先修改模型配置文件work_dir.yolo4_train.cfg。需要修改最后的三个yolo输出层

##########################

[convolutional]
batch_normalize=1
size=3
stride=1
pad=1
filters=256
activation=leaky

[convolutional]
size=1
stride=1
pad=1
filters=21
activation=linear


[yolo]
mask = 0,1,2
anchors =  12,18, 14,49, 17,23, 24,29, 31,45, 41,32, 52,59, 83,102, 159,229
classes=2  #预测的类别
num=9
jitter=.3
ignore_thresh = .7 #低于iou阈值的框不参与损失行数计算
truth_thresh = 1
scale_x_y = 1.2
iou_thresh=0.213
cls_normalize
### 如何在Google Colab中设置和训练YOLOv8深度学习模型 要在 Google Colab 中成功配置并训练 YOLOv8 深度学习模型,以下是详细的说明: #### 1. 安装必要的依赖项 首先,在 Colab 环境中安装 Ultralytics 提供的官方 YOLOv8 库。这可以通过运行以下命令来实现: ```bash !pip install ultralytics ``` 此命令会自动下载并安装最新版本的 YOLOv8 软件包[^1]。 #### 2. 加载数据集到 Colab 环境 为了使模型能够访问您的数据集,您需要将其上传至 Google Drive 并挂载驱动器。执行以下代码片段可完成这一过程: ```python from google.colab import drive drive.mount('/content/drive') ``` 接着,将数据集复制到工作目录下以便于后续处理。如果数据存储路径为 `/content/drive/MyDrive/dataset`,则可以这样操作: ```bash !cp -r /content/drive/MyDrive/dataset /content/ ``` #### 3. 数据预处理与格式化 确保数据遵循 YOLO 的标准格式(即标签文件应位于 `labels` 文件夹内)。对于 VOC 或 COCO 格式的原始标注数据,需通过脚本转换成 YOLO 所支持的形式。参考链接提供了关于如何进行这种转换的具体指导[^4]。 #### 4. 训练模型 定义好超参数后即可启动训练进程。下面是一个简单的例子展示如何调用 API 来开始训练任务: ```python from ultralytics import YOLO model = YOLO('yolov8n.pt') # 使用 nano 版本作为起点 results = model.train(data='dataset.yaml', epochs=100, imgsz=640) ``` 这里假设存在名为 `dataset.yaml` 的 YAML 配置文件描述了类别数量及其他细节信息。 #### 5. 测试与评估性能 当训练完成后,利用测试集合评估最终成果的质量水平非常重要。可通过如下方式加载最佳权重并对单张图片做预测演示效果: ```python success = model.val() metrics = success.metrics image_path = '/path/to/image.jpg' result = model(image_path)[0].plot() import matplotlib.pyplot as plt plt.imshow(result[:, :, ::-1]) plt.axis('off'); plt.show(); ``` 以上步骤概括了一个完整的基于 ColabYOLOv8 建模流程,涵盖了环境搭建、数据准备直至实际应用各个环节的内容^。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值