yolov4源码及数据链接
pytorch版yolov4链接:https://pan.baidu.com/s/1tI_jQwcfTGQ0DJQl-n-G5Q
提取码:82rt
草莓数据来源https://bingxiong.vip/?p=18438
数据预处理
1.源码需要图片文件及相应csv标签文件。
2. 修改data_make.py 把指向图片文件夹路径及csv标签文件路径修改成自己的路径`
root = r'home/dirve/MyDrive/images'
labels = os.path.join(root, 'labels.csv')
- 修改解析csv文件的相应代码,运行后生成程序需要的训练及测试的.text文件
模型配置及参数修改
1.源码中模型基于darknet构建,先修改模型配置文件work_dir.yolo4_train.cfg。需要修改最后的三个yolo输出层
##########################
[convolutional]
batch_normalize=1
size=3
stride=1
pad=1
filters=256
activation=leaky
[convolutional]
size=1
stride=1
pad=1
filters=21
activation=linear
[yolo]
mask = 0,1,2
anchors = 12,18, 14,49, 17,23, 24,29, 31,45, 41,32, 52,59, 83,102, 159,229
classes=2 #预测的类别
num=9
jitter=.3
ignore_thresh = .7 #低于iou阈值的框不参与损失行数计算
truth_thresh = 1
scale_x_y = 1.2
iou_thresh=0.213
cls_normalize