文章目录 一. 背景介绍 二. 代码目录组织 三. 代码解析 1.参数设置 2. 构建模型和数据 3.ONNX评测函数 4.导出onnx 5.收集校验信息 6.计算_amax值 7.校验模型 8.PTQ介绍 9.量化敏感性分析 10.main函数流程梳理和QAT介绍 四.量化模型转换(常规model插量化算子) 1.卷积模块构建 2.BasicBlock和Bottleneck 3.resnet模型 五.classification_flow.py运行结果展示 一. 背景介绍 模型开完并训练完成之后,为了部署到嵌入式设备,往往需要进行量化,以减少模型推理时的资源消耗,加快模型的推理速度。本教程仅针对TensorRT框架,使用TensorRT的python接口,进行量化相关的PTQ和QAT的介绍。本教程默认读者已经熟悉量化相关的基础概念(如量化QuantizeLinear和反量化DequantizeLinear算子),了解量化的过程需要完成的基本动作,如量化算子对模型节点进行精度变化(比如FP32->FP16,FP16->INT8)。相关的基础学习可以参考: 必看部署系列~懂你的神经网络量化教程:第一讲! (qq.com) 量化番外篇——Tensor