Python处理大型数组的计算——百倍性能加速

对于任何设计数组的计算密集型任务,请使用NumPy库。

NumPy库的主要特性是为Python提供了数组对象,比标准Python的列表有着更好的性能表现,更加适合用做数学计算。

先展示一下对于基本的运算符,标准列表和NumPy的数组的差异如何

1>标准列表

>>> #Python lists
>>> x = [1, 2, 3, 4]
>>> y = [5, 6, 7, 8]
>>> x * 2
[1, 2, 3, 4, 1, 2, 3, 4]
>>> x + 10
Traceback (most recent call last):
  File "<pyshell#4>", line 1, in <module>
    x + 10
TypeError: can only concatenate list (not "int") to list
>>> x + y
[1, 2, 3, 4, 5, 6, 7, 8]

2>NumPy的数组

>>> #NumPy arrays
>>> import numpy as np
>>> ax = np.array([1, 2, 3, 4])
>>> ay = np.array([5, 6, 7, 8])
>>> ax * 2
array([2, 4, 6, 8])
>>> ax + 10
array([11, 12, 13, 14])
>>> ax + ay
array([ 6,  8, 10, 12])
>>> ax * ay
array([ 5, 12, 21, 32])

可以看

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值