VBPR: Visual Bayesian Personalized Ranking from Implicit Feedback简介

本文深入探讨了BPR-MF(Bayesian Personalized Ranking from Matrix Factorization)模型的细节,这是一种广泛应用于个性化推荐系统的算法。文章解释了如何通过矩阵分解来预测用户对项目的偏好,以及如何使用BPR-OPT优化准则进行个性化排名。此外,还介绍了模型参数是如何通过随机梯度上升(SGA)进行更新的。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Preference Predictor

在这里插入图片描述

预测模型如下:
在这里插入图片描述

图片特征通过CNN进行提取,将图片特征与潜在的特征联合在一起进行推荐

在这里插入图片描述

Model Learning Using BPR

The following optimization criterion is used for personalized ranking (BPR-OPT):

在这里插入图片描述

When using Matrix Factorization as the preference predictor (i.e., BPR-MF), x^uij\hat{x}_{uij}

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值