GEE:连续变化检测 CCD 第一步(导出ee.Algorithms.TemporalSegmentation.Ccdc函数的结果)

作者:CSDN @ _养乐多_

连续变化检测与分类(Continuous Change Detection and Classification, CCDC)主要有两个组件,一个连续变化检测 CCD,另外一个分类。在 Google Earth Engine (GEE)平台上进行 CCD 时间序列变化检测的时候,为了防止内存超限问题,将代码分为2阶段执行。第一阶段是运行 ee.Algorithms.TemporalSegmentation.Ccdc 函数,该函数根据输入参数进行变化检测,结果会导出来一个 GEE 上的 Array 类型数组,并将其导出到 assets 中以防止内存超限。Array 类型数组不能直接可视化和下载,需要在第二阶段将其进一步处理转换成 image 格式,才能在 GEE 上下载图像。本文将详细介绍 CCD 的第一阶段的代码。

该系列教程参考《GEE:连续变化检测与分类(Continuous Change Detection and Classification, CCDC)教程》。



<think>好的,用户想要查找与CCDC(Continuous Change Detection and Classification)相关的代码示例。首先我需要确认CCDC是什么,以及常见的实现方式。 CCDC是一种用于遥感影像的时间序列分析方法,主要用于检测地表覆盖的连续变化。它通常结合统计学方法和时间序列模型来识别变化点。根据用户提供的引用[3]提到的GLanCE产品可能涉及土地覆盖变化检测,可能与CCDC相关。 接下来,我需要查找是否有公开的代码库或示例。考虑到用户之前引用的内容中有关于开发环境的部分(引用[2]),比如使用ARM GCC和VSCode,可能需要跨平台的代码示例,比如Python或C/C++。 在GitHub等平台上搜索“CCDC algorithm code example”,可能会找到相关的开源项目。例如,美国地质调查局(USGS)或一些大学的研究团队可能有公开的实现。另外,CCDC常与Landsat数据结合使用,因此可能需要用到GDAL、NumPy等库进行数据处理。 需要注意的是,用户可能需要代码的结构和关键步骤的解释,而不仅仅是代码片段。因此,在提供示例时,应说明每一步的作用,比如时间序列拟合、变化检测方法(如BFAST)、分类步骤等。同时,应提醒用户安装必要的依赖库,并处理输入数据格式。 另外,用户可能对如何应用CCDC到实际项目中感兴趣,可以建议参考相关论文或文档,比如Zhu et al.的论文,这些通常在方法部分会有详细描述。同时,根据引用[3]中提到的高纬度地区数据可用性问题,可能需要提醒用户注意数据源和预处理步骤。 最后,生成的相关问题应围绕CCDC的实现细节、算法优化和应用场景展开,帮助用户进一步探索。</think>以下是关于CCDC(Continuous Change Detection and Classification)的代码示例说明: ### CCDC算法简介 CCDC是一种基于时间序列遥感影像的连续变化检测与分类方法,常用于地表覆盖变化分析[^3]。其核心是通过拟合时间序列模型检测突变点。 ### 代码框架示例(Python伪代码) ```python import numpy as np from sklearn.ensemble import RandomForestClassifier class CCDC_Processor: def __init__(self, time_series): self.ts = time_series # 时间序列数据 def detect_changes(self): # 时间序列分段拟合 breakpoints = [] for i in range(1, len(self.ts)): prev_segment = self.ts[:i] next_segment = self.ts[i:] if self._significance_test(prev_segment, next_segment): breakpoints.append(i) return breakpoints def _significance_test(self, seg1, seg2): # 使用CUSUM或BFAST方法进行统计检验 return abs(np.mean(seg1) - np.mean(seg2)) > threshold # 使用示例 time_series = load_landsat_data() # 加载Landsat时间序列 processor = CCDC_Processor(time_series) changes = processor.detect_changes() ``` ### 关键步骤说明 1. **数据预处理**:需加载多时相遥感影像(如Landsat系列),进行辐射校正和云掩膜处理 2. **时间序列建模**:通常使用谐波回归模型拟合每个像元的光谱特征 $$ y(t) = \alpha_0 + \sum_{k=1}^n [\alpha_k \cos(2\pi kt) + \beta_k \sin(2\pi kt)] + \epsilon $$ 3. **变化检测**:通过残差分析识别突变点,使用BFAST(Break for Additive Season and Trend)等方法 4. **分类实现**:结合随机森林等分类器进行土地覆盖类型识别 ### 相关资源建议 - 美国地质调查局官方提供部分Landsat处理工具 - Google Earth Engine平台集成CCDC实现 - GitHub开源项目`gee-ccdc-tools`提供JavaScript示例
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

_养乐多_

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值