【感知模块算法】障碍物detect+trace+prediction方向介绍

本文介绍了机器人感知的三个方面:障碍物检测、跟踪和预测。在检测部分,探讨了视觉和激光雷达目标检测,涉及图像处理、深度学习框架。跟踪部分提及了障碍物运动速度的判断。预测部分则讨论了如何预测障碍物未来轨迹,包括基于模型和数据驱动的方法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >


前言

认知有限,望大家多多包涵,有什么问题也希望能够与大家多交流,共同成长!

在这里插入图片描述
机器人传感器及感知相关教程及博客请关注专栏:
https://blog.csdn.net/qq_35635374/article/details/138507260

本文先对**机器人感知(障碍物detect+trace+prediction方向介绍)**做个简单的介绍,具体内容后续再更,其他模块可以参考去我其他文章


提示:以下是本篇文章正文内容

今天,我以自己的角度来看待感知
一方面、是对障碍物/目标的感知,包括障碍物/目标检测、障碍物/目标跟踪、障碍物/目标预测
当然我只做过检测和跟踪。。。

一、多维度看感知问题,体会复杂性

(1)sensor维度(Input):Lidar、Camera、Radar、Ultrosonic、高精地图…

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

RoboticsTechLab

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值