【全局路径规划模块采样算法】概率路线图probabilistic Roadmap搜索(附C++代码)

本文详细介绍了概率路线图(PRM)算法,包括其基本原理、采样构建和概率图搜索阶段,以及lazy PRM算法的优化。PRM通过随机采样和图搜索解决路径规划问题,适用于高维空间和复杂约束环境。文章还提供了简单的C++代码实现,展示如何在学习和查询阶段应用PRM。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

机器人全局路径规划相关教程及博客请关注专栏:
https://blog.csdn.net/qq_35635374/article/details/138174918

移动机器人规划控制合集(这个比较全面):
https://blog.csdn.net/qq_35635374/article/details/142830798
在这里插入图片描述

本文先对**概率路线图probabilistic Roadmap搜索(结合了全局采样和图搜索的的思想)**做个简单的介绍,具体内容后续再更,其他模块可以参考去我其他文章
概率路线图(Probabilistic Roadmap Method, PRM)算法是一种基于随机采样的路径规划方法,广泛应用于机器人和自动驾驶系统的路径规划问题中。PRM算法的核心思想是在状态空间中随机撒点,并通过这些点构建一个网络图,即“路图”,然后在该路图上进行路径搜索,以找到从起点到终点的可行路径。以下是具体介绍:

  1. 基本原理与实现步骤:PRM算法的执行可以分为两个主要阶段:学习阶
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

RoboticsTechLab

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值