【优化理论】第三章之四:目标函数的求解之0.618比例进退法

系列文章目录

一、机器人实战项目
二、机器人/自动驾驶导航功能算法合集
三、计算技术&硬软件开发工程篇

目标函数的求解

最优化问题的求解是一个迭代的过程, 从初始点(初始解)x0开始, 通过迭代方法(梯度下降法, 牛顿法等)逐步更新xi, 直至逼近最优解x∗
在这里插入图片描述
上图形象的展示了这个迭代的过程, 从初始解start点开始, 逐步迭代至最优解. 在这个1维问题上, 迭代方向只有左和右(-, +), 我们如何确定迭代的方向和步长呢? 或者更高维度的问题里, 如何确定每个维度的方向和步长呢?

0.618比例进退法

0.618方法方法适合于 单峰函数 ,既具有“高-低-高”形状的函数,然而,在众多问题中,我们所面对的函数不可能都是单峰函数,所以实际上我们也用这种方法处理一般一维函数的极小问题。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

RoboticsTechLab

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值