系列文章目录
一、机器人实战项目
二、机器人/自动驾驶导航功能算法合集
三、计算技术&硬软件开发工程篇
文章目录
目标函数的求解
最优化问题的求解是一个迭代的过程, 从初始点(初始解)x0开始, 通过迭代方法(梯度下降法, 牛顿法等)逐步更新xi, 直至逼近最优解x∗
上图形象的展示了这个迭代的过程, 从初始解start点开始, 逐步迭代至最优解. 在这个1维问题上, 迭代方向只有左和右(-, +), 我们如何确定迭代的方向和步长呢? 或者更高维度的问题里, 如何确定每个维度的方向和步长呢?
0.618比例进退法
0.618方法方法适合于 单峰函数 ,既具有“高-低-高”形状的函数,然而,在众多问题中,我们所面对的函数不可能都是单峰函数,所以实际上我们也用这种方法处理一般一维函数的极小问题。