山顶夕景
互联网大厂AI算法工程师。实践出真知。
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
QQ音乐推荐召回算法的探索与实践
文章目录一、业务介绍1.业务介绍2. QQ音乐推荐场景特点3. QQ音乐推荐解决方案二、融合音乐知识图谱召回三、序列与多兴趣召回3.1 空间和时间建模方案3.2 多兴趣提取方案3.3 基于Self-Attention的多兴趣表征方法四、音频召回4.1 音频特征挖掘方法4.2 多模态音频召回方法五、联邦学习召回5.1 联邦学习召回方法5.2 联邦学习升级方案六、问答环节Q1:音乐的召回样本是怎样实现的?和排序测的样品选择有哪些差异,原因是什么?Q2:在音乐场景下怎么去平衡一个用户的长短及兴趣?Q3:多兴趣的召转载 2022-04-05 16:27:56 · 2129 阅读 · 0 评论 -
【Recsys2021】推荐系统论文整理和导读
文章目录一、按照推荐系统研究方向分类1.1 信息茧房和回音室1.2 探索与利用1.3 偏差与纠偏1.4 冷启动1.5 评估体系1.6 会话/序列推荐1.7 隐私保护1.8 对抗与攻击1.9 对话推荐系统1.10 可解释性推荐1.11 跨域推荐1.12 基于视觉的推荐1.13 组推荐/用户物品分层推荐1.14 推荐系统交互设计二、按照推荐技术分类2.1 协同过滤2.2 图学习2.3 强化学习2.4 度量学习2.5 联邦学习2.6 架构/训练/优化三、实验性质的文章总结以下文章来源于蘑菇先生学习记 ,作者蘑菇原创 2021-10-31 16:12:09 · 2169 阅读 · 2 评论 -
【CTR排序】多任务学习之MMOE模型
如果任务之间差的很大,MOE这种单门控控制的方式就不行了,因为此时底层的多个专家学习到的特征模式相差可能会很大,毕竟任务不同,而单门控机制选择专家组合的时候,肯定是选择出那些有利于大多数任务的专家, 而对于某些特殊任务,可能学习的一塌糊涂。更关键的时候,参数量还不会增加太多。为了增加灵活性, 为不同的模型还学习了重要性权重,这可能考虑到了在学习任务的共性模式上, 不同的模型学习的模式不同,那么聚合的时候,显然不能按照相同的重要度聚合,所以为各个专家学习权重,默认了不同专家的决策地位不一样。原创 2022-09-18 20:58:17 · 1933 阅读 · 0 评论 -
【用户画像CIKM】Learning to Build User-tag Profile in Recommendation System
文章目录零、论文简介一、Introduction二、Related work三、Model3.1 建模为多分类任务(而非CTR)3.2 用户侧的特征学习3.3 用户点击标签偏好3.4 画像指标四、Experiments4.1 experiment setup4.2 the imporvements of attention mechanism4.3 the improvements of cross feature4.4 the improvements of joint loss4.5 the perf原创 2022-05-03 17:06:32 · 1222 阅读 · 0 评论 -
【推荐系统】58同城的本地服务推荐架构
学习总结(1)大类目、帖子、标签、商家与店铺的推荐场景:要防止信息同质化的推荐,同时还要面对复杂人群结构(存在未登陆用户、新用户、低活用户等)。要结合业务场景理解(3.1的用户交互过程)(2)58同城推荐系统架构图:文章目录学习总结一、58同城推荐的场景和类型1.1 推荐的应用场景:1.2 推荐类型:1.3 场景特点:1.4 本地服务推荐解决方案二、本地标签推荐2.1 多路召回2.2 召回模型的演进2.3 基于用户行为-Bi-lstm2.4 ATRank Framework三、猜你想找功能3.1 用原创 2021-12-04 10:21:52 · 2115 阅读 · 0 评论 -
【王喆-推荐系统】RS整体架构和流程
这个系列是学习王喆的【深度学习推荐系统实战】时做的笔记和自己的学习总结。文章目录零、一个栗子的引入一、学习目标和要求1.学习目标2.课前要求二、课程体系1.基础架构篇2.特征工程篇3.线上服务篇4.推荐模型篇5.效果评估篇6.前沿拓展篇三、小结Reference零、一个栗子的引入先从一个栗子入手,2019 年,阿里著名的千人千面系统驱动了天猫“双 11”2684 亿元的成交额。假设我们通过改进天猫的商品推荐功能,让平台整体的转化率提升 1%,那么在 2684 亿元成交额的基础上,我们就能再增加 26.原创 2021-09-28 09:16:38 · 1939 阅读 · 0 评论 -
【王喆-推荐系统】(task1)DL推荐系统架构(基础架构篇)
深度学习中 Embedding 技术在召回层的应用。作为深度学习中非常核心的 Embedding 技术,将它应用在推荐系统的召回层中,做相关物品的快速召回,已经是业界非常主流的解决方案了。不同结构的深度学习模型在排序层的应用。排序层(也称精排层)是影响推荐效果的重中之重,也是深度学习模型大展拳脚的领域。深度学习模型灵活性高,表达能力强(因此非常适合于大数据量下的精确排序)。工业界和学业界都在不断投入和迭代深度学习排序模型。原创 2021-09-29 09:32:43 · 2431 阅读 · 2 评论 -
【王喆-推荐系统】(task2)Sparrow麻雀推荐系统(基础架构篇)
(1)这个task先把Sparrow推荐系统跑通,一开始IDEA识别maven项目和一些包载入出现问题,最后折腾下解决了:解决:IDEA无法识别maven项目和加载包,后面的章节也是围绕这个基础推荐系统详细展开。(2)Sparrow RecSys一共分为三个模块,分别是数据、模型和前端。其中每个部分都用业界推荐系统的主流技术,比如数据部分会用 Spark,Flink 进行样本和特征的处理,模型部分会使用 TensorFlow 训练深度神经网络、Wide&Deep、PNN 等模型。(3)原创 2021-09-30 21:20:20 · 2431 阅读 · 0 评论 -
【王喆-推荐系统】(task3)深度学习基础和TensorFlow入门(基础架构篇)
学习心得(1)回顾了从神经元学到了神经网络,再到训练神经网络的方法,以及神经网络和深度学习的关系(如下),初步学习工具Spark、TensorFlow 和 Redis的基础操作。(2)画图神器:https://app.diagrams.net/文章目录学习心得往期回顾一、深度学习基础(1)神经元和点击率(2)神经网络如何学习1)前向传播2)损失函数3)梯度下降二、神经网络和深度学习的关系三、深度学习在推荐系统的应用四、资料推荐和工具4.1 书籍4.2 工具Spark、TensorFlow 和 Red原创 2021-10-04 02:29:08 · 1879 阅读 · 1 评论 -
【推荐系统】如何解决冷启动问题
文章目录零、推荐系统中的特征一、推荐系统的冷启动二、冷启动的分类三、如何解决冷启动3.1 提供非个性化的推荐3.2 利用用户注册信息3.3 利用社交网络信息3.4 用户的试反馈3.5 协同推荐3.6 利用专家知识3.7 其他策略四、embedding角度:补充side information五、推荐工程架构的角度Reference零、推荐系统中的特征一、推荐系统的冷启动角度1:为了准确匹配用户的需求,解决信息超载问题,各大互联网都有个性化的推荐系统,但是在建立该系统初期,没有大量用户数据,或者系统中的原创 2022-02-24 15:40:12 · 3683 阅读 · 0 评论 -
【RS样本选择与构造】正负样本的选择 | 负采样 | pointwise、pairwise、listwise
如P(D=1∣w,c)P(D=1 \mid w, c)P(D=1∣w,c)表示c和w共现的概率P(D=1∣w,c)=σ(vw⋅vc′)P(D=1 \mid w, c)=\sigma\left(v_{w} \cdot v_{c}^{\prime}\right)P(D=1∣w,c)=σ(vw⋅vc′)为了得到每个单词的高质量稠密embedding(相似上下文的单词的vector应该相似),word2vec是通过一个滑动窗口的滑动,同时计算P(wt+j∣wt)P\left(w_{t+j} \mid w_{原创 2022-07-07 00:18:15 · 2919 阅读 · 2 评论 -
【论文笔记KDD2021】MixGCF: An Improved Training Method for Graph Neural Network-based Recommender Systems
论文题目:MixGCF: An Improved Training Method for Graph Neural Network-based Recommender Systems论文链接:http://keg.cs.tsinghua.edu.cn/jietang/publications/KDD21-Huang-et-al-MixGCF.pdf论文代码:https://github.com/huangtinglin/MixGCF论文作者:Tinglin Huang,唐杰老师等人。............原创 2022-08-04 21:05:48 · 937 阅读 · 0 评论 -
【推荐算法课程】CS246 大数据挖掘
文章目录一、课程介绍二、作者介绍三、具体章节四、小结一、课程介绍重点~课程对应教材(pdf可下载):http://www.mmds.org/CS246主题包括: 频繁项集和关联规则,高维数据中的近邻搜索,局部敏感哈希(LSH),降维,推荐系统,聚类,链接分析,大规模监督机器学习,数据流,挖掘结构化数据的Web, Web广告。大数据挖掘Mining Massive Data Sets,主讲人是斯坦福大牛Jure Leskovec,他是斯坦福大学计算机学院的副教授,也是图表示学习方法 node2vec原创 2022-04-13 22:14:23 · 1104 阅读 · 0 评论 -
【王喆-推荐系统】(task1)推荐系统的五大特征(特征工程篇)
学习心得(1)本次task学习特征的选择,推荐系统中可用的特征非常多,但它们基本上可被划分到“用户行为”、“用户关系”、“属性标签”、“内容数据”、“场景信息”这五个类别,而且挑选特征的方法也遵循着“保留有用信息,摒弃冗余信息”的原则。(2)针对不同的推荐系统,要针对它们的业务特点,因地制宜地挑选合适的特征,抓住业务场景中的关键信息,这也是在工作中要积累的经验。从工程的角度来说,除了特征的挑选,特征工程还包括大量的数据预处理、特征转换、特征筛选等工作。文章目录学习心得一、特征工程是啥二、特征工程的原则原创 2021-10-07 16:41:24 · 1966 阅读 · 2 评论 -
【王喆-推荐系统】(task2)用Spark进行特征处理(特征工程篇)
学习心得(1)本次task学习了推荐系统中特征处理的主要方式,并利用 Spark 实践了类别型特征和数值型特征的主要处理方法,最后得出特征处理的原则——“特征处理没有标准答案,需要根据模型效果实践出真知”。(2)Spark 的计算过程:Stage 内部数据高效并行计算,Stage 边界处进行消耗资源的 shuffle 操作或者最终的 reduce 操作。(3)针对特征处理的方法,深度学习和传统机器学习的区别并不大,TensorFlow、PyTorch 等深度学习平台也提供了类似的特征处理函数。在今后的原创 2021-10-10 09:48:06 · 2632 阅读 · 3 评论 -
【推荐系统】特征拼接和工程实践
特征在线/离线一致性另一个难点是特征处理一致性问题,也称为 Training-Serving skew。 一般情况下,算法工程师都是离线整理数据,处理特征,训练模型,离线指标ready后再上线小流量实验。在基建不完善的情况下,有可能会出现:同一条数据,离线训练和在线推理的特征处理结果不一致。 举个例子极端的例子: city=shenzhen这个字符串,离线数据样本处理时可能使用spark计算,计算hash值假设为1001,在线rank计算shenzhen哈希值可能使用语言不一样,hash算法也不一样,导致转载 2023-05-25 01:05:12 · 1613 阅读 · 0 评论 -
【王喆-推荐系统】(task3)Embedding基础(特征工程篇)
学习心得(1)Word2vec 的研究中提出的模型结构、目标函数、负采样方法、负采样中的目标函数在后续的研究中被重复使用并被屡次优化。掌握 Word2vec 中的每一个细节成了研究 Embedding 的基础。(2)Embedding 就是用一个数值向量“表示”一个对象的方法。通过 Embedding,我们又引出了 Word2vec,Word2vec 是生成对“词”的向量表达的模型。其中,Word2vec 的训练样本是通过滑动窗口一一截取词组生成的。在训练完成后,模型输入向量矩阵(即本文的WV×NW_{原创 2021-10-15 10:27:39 · 1224 阅读 · 0 评论 -
【王喆-推荐系统】(task4)Graph Embedding(特征工程篇)
学习总结(1)本次task学习Embedding中的Deep Walk和Node2vec算法,和Embedding在推荐系统的三种应用:直接应用、预训练应用和End2End训练应用。(2)Deep Walk算法:1)首先基于原始的用户行为序列来构建物品关系图;2)采用随机游走的方式随机选择起始点,重新产生物品序列;3)将2)这些随机游走生成的物品序列输入Word2vec模型,生成最终的物品Embedding向量。(3)Node2vec相比于Deep Walk,增加了随机游走过程中跳转概率的倾向性原创 2021-10-22 11:11:57 · 1606 阅读 · 1 评论 -
【GNN】图技术在美团外卖下的场景化应用及探索
对于高频用户,可能会导致兴趣圈封闭导致模型建模无法跳脱既有的兴趣圈;对于低频用户,由于信息的缺乏导致其兴趣刻画不完整。因此,我们需要具备拓展用户兴趣边界的信息扩展能力、对单点信息的扩充能力;即寻找一种新的数据结构,打破二维线性限制,实现三维立体扩展,基于此种想法,从图的角度来重新思考用户行为建模:==以私域线性行为序列作为兴趣刻画基础,以公域全局互联关系图作为兴趣补充==,建立个体差异性与群体共性的连接。原创 2022-09-09 00:59:18 · 976 阅读 · 0 评论 -
【王喆-推荐系统】(task5)Embedding实践(特征工程篇)
学习总结(1)用Spark生成Item2vec和Graph Embedding。运用 Spark 实现了经典的 Embedding 方法 Item2vec 和 Deep Walk。(2)关于 Item2vec 的 Spark 实现,应该注意的是训练 Word2vec 模型的几个参数 VectorSize、WindowSize、NumIterations 等,知道它们各自的作用。它们分别是用来设置 Embedding 向量的维度,在序列数据上采样的滑动窗口大小,以及训练时的迭代次数。(3)而在 Dee原创 2021-10-26 16:16:29 · 1526 阅读 · 4 评论 -
【综述阅读】Graph Neural Networks for Recommender Systems: Challenges, Methods, and Directions
学习总结文章目录学习总结一、Inroduction二、Background2.1 Recommender Systems2.2 Graph Neural Networks2.3 GNNs在推荐系统的必要性三、Challenges of applying GNNs to recommender systems3.1 Graph Construcion3.2 Network Design3.3 Model Optimization3.4 Computation Efficiency四、Existing Mth原创 2021-11-11 23:59:08 · 2757 阅读 · 4 评论 -
【CIKM 2021】推荐系统相关论文分类
第30届国际信息与知识管理大会(The 30th ACM International Conference on Information and Knowledge Management, CIKM 2021)计划于2021年11月1日-11月5日在线召开。ACM CIKM是CCF推荐的B类国际学术会议,是信息检索和数据挖掘领域最重要的学术会议之一。这次会议共收到1251篇长文(Full paper)、290篇应用文(Applied paper)和626篇短文(Short paper)投稿,有271篇长文、原创 2022-01-12 00:38:14 · 2340 阅读 · 0 评论 -
【推荐系统】DSSM双塔模型浅析
文章目录一、DSSM模型1.1 DSSM模型架构1.2 模型原理二、负样本构造的6个常用方法2.1 曝光未点击数据2.2 全局随机选择负例2.3 Batch内随机选择负例2.4 曝光数据中随机选择负例2.5 基于Popularity随机选择负例2.6 基于Hard选择负例三、DSSM在工业界常用的原因3.1 论文的实验细节3.1 DSSM召回在线infer四、DSSM的变种Reference一、DSSM模型1.1 DSSM模型架构这里不按原论文出牌,从推荐系统角度:双塔模型结构简单,一个user原创 2022-05-14 13:49:35 · 1917 阅读 · 0 评论 -
微信基于Torchrec的大规模推荐系统训练
推荐系统往往和公司的现金流直接挂钩,试错成本非常高,大家需要的是一个经过了业务测试的框架。这也是为什么之前的一些基于 PyTorch 的推荐框架都未曾被广泛应用过。而 TorchRec 作为一个官方的推荐框架,在 2022 年 1 月份推出之时,Meta就已经利用它在 Instagram Reels 业务上顺利训练并上线了一个 1250 亿参数的模型,成为了一个经过业务测试的 PyTorch 框架。有了 Instagram 这样一个大业务的支撑,wechat终于可以去理性地考量一个基于 PyTorch 的推转载 2023-04-08 17:23:03 · 1532 阅读 · 0 评论 -
【PyTorch基础教程30】DSSM双塔模型(线上召回 | 模型更新)
召回中,一般的训练方式分为三种:point-wise、pair-wise、list-wise。用参数`mode`来指定训练方式,每一种不同的训练方式也对应不同的Loss。对应的三种训练方式可以参考下图(3种),其召回中,一般的训练方式分为三种:point-wise、pair-wise、list-wise。在datawhale的RecHub中,用参数`mode`来指定训练方式,每一种不同的训练方式也对应不同的Loss。.................................原创 2022-06-22 22:13:50 · 2996 阅读 · 2 评论 -
【王喆-推荐系统】线上服务篇-(task1)线上高并发的推荐服务
学习总结(1)“造火箭”:工业级推荐服务器的具体功能,以及实现工业级高并发推荐服务的主要机制。其中,推荐服务器的具体功能主要有:模型服务、数据库接口、推荐模块逻辑、补充业务逻辑等等,而工业级高并发推荐服务的主要机制有负载均衡、缓存和服务降级。(2)“拧螺丝”:利用 Jetty 实践并搭建起了 SparrowRecSys 的推荐服务接口。这个过程中,注意每个注册到 Jetty Context 的 Servlet 服务中的主要业务逻辑,实际工作中是类似的。(3)Jetty是一个提供HHTP服务器、HTTP原创 2021-10-26 19:53:07 · 1140 阅读 · 0 评论 -
【王喆-推荐系统】线上服务篇-(task2)用Redis存储特征
学习总结(1)本次task学习推荐系统的存储模块(遵循“分级存储”原则,在开销和性能中平衡)和对Sparrow Recsys进行分解。这其实也和计算机的存储设备一样(分为寄存器、Cache、内存、SSD等金字塔形)。(2)使用内存数据库redis(两大特点:key-value形式存储;纯内存数据库)。在具体的特征存取过程中,要熟悉利用 jedis 执行 SET,GET 等 Redis 常用操作的方法。(3)搭建一套完整的推荐服务,有3个大问题:用 Jetty Server 搭建推荐服务器问题、用 Re原创 2021-10-27 16:08:38 · 2023 阅读 · 1 评论 -
【王喆-推荐系统】线上服务篇-(task3)召回层
(1)学习推荐系统中召回层的功能特点(要快速准确地过滤出相关物品,缩小候选集)和实现召回层的三个技术方案:简单快速的单策略召回、业界主流的多路召回、深度学习推荐系统中最常用的 Embedding 召回。文章目录学习总结一、召回层和排序层的功能特点二、单策略召回三、多路召回四、基于 Embedding 的召回方法五、作业Reference记得前段时间百度CEO李彦宏在北大的演讲提到工程的思维很重要,就说到用户搜索关键字时,百度并不用对成百上千的网页进行排序再提供给用户(因为这样用户也不可能全部原创 2021-10-29 10:31:55 · 1535 阅读 · 4 评论 -
【王喆-推荐系统】线上服务篇-(task4)局部敏感哈希
学习总结(1)解决最近邻问题最“完美”的办法就是使用局部敏感哈希,在每个桶内点的数量接近时,它能够把最近邻查找的时间控制在常数级别。为了进一步提高最近邻搜索的效率或召回率,我们还可以采用多桶策略,首先是基于“且”操作的多桶策略能够进一步减少候选集规模,增加计算效率,其次是基于“或”操作的多桶策略则能够提高召回率,减少漏掉最近邻点的可能性。文章目录学习总结一、Reference一、Reference(1)https://github.com/wzhe06/Reco-papers(2)《深度学习推原创 2021-10-29 17:18:09 · 1121 阅读 · 2 评论 -
【王喆-推荐系统】线上服务篇-(task5)部署离线模型
学习总结(1)业界主流的模型服务方法有 4 种,分别是预存推荐结果或 Embeding 结果、预训练 Embeding+ 轻量级线上模型、利用 PMML 转换和部署模型以及 TensorFlow Serving。(2)重点使用 TensorFlow Serving,它是 End2End 的解决方案,使用起来非常方便、高效,而且它支持绝大多数 TensorFlow 的模型结构,对于深度学习推荐系统来说,是一个非常好的选择。但它只支持 TensorFlow 模型,而且针对线上服务的性能问题,需要进行大量的优原创 2021-10-30 20:46:21 · 2067 阅读 · 8 评论 -
【王喆-推荐系统】相似电影推荐功能(综合复习篇)
学习总结(1)在sparrow RecSys中使用 Embedding 方法准备好了食材,使用 Redis 把食材下锅,做菜的步骤稍微复杂一点,分为建立候选集、实现召回层、实现排序层这 3 个步骤。最后我们用 HTML+Ajax 的方式把相似电影推荐这盘菜呈现出来。(2)品菜:针对相似物品推荐这一常见的功能,可以使用人工测试、Ground truth 和商业指标评估这三种方法对得到的结果进行评估。用评估结果指导模型的下一步改进。(3)参考最后部分的思维导图。文章目录学习总结一、清点技能库1.1 准备原创 2021-10-31 10:58:09 · 2312 阅读 · 5 评论 -
【CIKM2022】深度点击率预估模型的One-Epoch过拟合现象剖析
观察到CTR模型的过拟合现象非常特殊:在训练的第一个epoch结束,第二个epoch开始时,预估模型发生过拟合现象,并且在测试集上的效果急剧下降,我们称其为“one epoch现象”。为了解释该现象,我们在工业生产数据集上进行了大量实验。结果显示模型结构、模型的快速收敛(例如强优化器和较大学习率)以及特征ID的稀疏性是导致one epoch现象的关键因素。令人惊讶的是,深度模型往往在训练一个epoch后就可以达到最佳性能,这也解释了为什么许多工业推荐系统只对数据进行一次训练。我们进而提出了one epoch转载 2023-02-09 01:21:58 · 908 阅读 · 0 评论 -
【王喆-推荐系统】模型篇-(task1)协同过滤CF
学习总结(1)协同过滤是一种协同大家的反馈、评价和意见,对海量的信息进行过滤,从中筛选出用户感兴趣信息的一种推荐算法。它的实现过程主要有三步,先根据用户行为历史创建共现矩阵,然后根据共现矩阵查找相似用户,再根据相似用户喜欢的物品,推荐目标用户喜欢的物品。(2)协同过滤处理稀疏矩阵的能力比较差,因此,矩阵分解算法被提出了,它通过分解共现矩阵,生成用户向量矩阵和物品向量矩阵,进而得到用户隐向量和物品隐向量。你可以完全把最后的结果当作用户 Embedding 和物品 Embedding 来处理。文章目录学原创 2021-10-28 14:37:49 · 1355 阅读 · 0 评论 -
【王喆-推荐系统】模型篇-(task2)深度学习推荐系统脉络
算法工程师的工作是一个持续优化和迭代的过程,如果想要追求更好的推荐效果,我们的思路不应该只局限于某一个被成功应用的模型,而是应该把眼光放得更高、更宽,去思考这些成功的推荐模型在业界下一步的发展方向是什么?它具有“易实现”、“易落地”、“易改造”的特点,获得了业界的广泛应用。(2)其次业务场景出发,不是所有的算法都是公司的业务,现有公司的业务数据就是这样,DIEN模型是因为阿里具有强大的大数据采集处理能力平台架构,用户行为变化的能力可以完全捕捉,才能实现Attention机制深度推荐系统。原创 2021-10-28 15:28:34 · 1258 阅读 · 0 评论 -
【王喆-推荐系统】(task3)训练样本的处理 | 特征数据的上线(模型篇)
学习总结(1)在选择具体特征的过程中,我们遵循了“物品特征”、“用户特征”、“场景特征”这三大类特征分类方式,基于 MovieLens 的 ratings 表和 movies 表完成了特征抽取。(2)在样本处理过程中,我们选用评分和基于评分生成的好评差评标识作为样本标签,并基于 ratings 表的每条数据,通过联合物品和用户数据生成训练样本。(3)在训练样本的生成中,要特别注意“未来信息”的问题,利用 Spark 中的 window 函数滑动生成历史行为相关特征。最后我们利用 Redis 的 hse原创 2021-11-01 20:39:48 · 1040 阅读 · 0 评论 -
【CTR】美团搜索粗排优化的探索与实践
在搜索、推荐、广告等大规模工业界应用领域,为了平衡性能和效果,排序系统普遍采用级联架构[1,2],如下图 1 所示。以美团搜索排序系统为例,整个排序分为粗排、精排、重排和混排层;粗排位于召回和精排之间,需要从千级别候选 item 集合中筛选出百级别 item 集合送给精排层。图1 排序漏斗样本选择偏差:级联排序系统下,粗排离最后的结果展示环节较远,导致粗排模型离线训练样本空间与待预测的样本空间存在较大的差异,存在严重的样本选择偏差。...转载 2022-08-12 00:54:05 · 995 阅读 · 0 评论 -
【王喆-推荐系统】(task4)Embedding+MLP模型(模型篇)
(1)(embedding+MLP),但是对于tensorflow不熟悉,还有需要注意特征处理:类别型特征 Embedding 化,数值型特征直接输入 MLP。下一篇task是用pytorch实现的版本。(2)Embedding+MLP 主要是由 Embedding 部分和 MLP 部分这两部分组成,使用 Embedding 层是为了将类别型特征转换成 Embedding 向量,MLP 部分是通过多层神经网络拟合优化目标。具体来说,以微软的 Deep Crossi原创 2021-11-02 11:46:13 · 2073 阅读 · 0 评论 -
【树模型与集成学习】(task6)梯度提升树GBDT+LR
学习总结(1)不同问题的提升树学习算法,主要区别在于使用的损失函数不同,如用平方误差损失函数的回归问题、用指数损失函数的分类问题、用一般损失函数的一般决策问题等。(2)由于GBDT是利用残差训练的,在预测的过程中,我们也需要把所有树的预测 值加起来,得到最终的预测结果。【内容概要】Part D第一节和第二节【打卡内容】侧边栏练习,知识回顾,实现gbdt的分类树和回归树文章目录学习总结一、用于回归的GBDT1.1 函数空间的优化问题1.2 学习率1.3 另一个角度二、用于分类的GBDT2.1 拟合的原创 2021-11-03 16:21:40 · 930 阅读 · 0 评论 -
【Pytorch基础教程26】wide&deep推荐算法(tf2.0和torch版)
学习总结文章目录学习总结一、tensorflow2.0的安装二、数据集的加载三、模型的搭建四、模型训练和测试五、模型搭建的比较六、经典wide&deep模型(tf2.0版)6.0 模型提出的背景6.1 Retrieval和Ranking6.2 训练的方法:6.3 区别联合训练和集成学习的差别:6.4 代码部分(1)导入数据集(2)特征处理1)类别型特征:利用 One-hot 编码处理2)数值型特征:归一化和分桶(3)模型部分(4)训练结果Reference一、tensorflow2.0的安装学原创 2022-03-26 22:35:04 · 3501 阅读 · 1 评论 -
【王喆-推荐系统】模型篇-(task5)wide&deep模型
学习总结(1)实现了业界影响力非常大的深度学习模型 Wide&Deep,它是由 Wide 部分和 Deep 部分组成的。其中,Wide 部分主要是为了增强模型的“记忆能力”,让模型记住“如果 A,那么 B”这样的简单但数量非常多的规则。Deep 部分是为了增强模型的“泛化能力”,让模型具备对于稀缺样本、以及从未出现过的特征组合的预测能力。Wide&Deep 正是通过这样取长补短的方式,让模型的综合能力提升。(2)在具体实践的时候,我们继续使用 TensorFlow 的 Keras 接口实原创 2021-11-03 17:10:27 · 1338 阅读 · 0 评论