自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(27)
  • 资源 (15)
  • 收藏
  • 关注

原创 【V19.0 - 共创篇】我给AI念了一段“咒语”,它就成了金牌编剧——揭秘驱动AI改稿的Prompt工程艺术

在上一篇 《我把“大模型”装进电脑,AI学会了“创造性”改稿》 中,我们成功地将强大的Qwen-14B大模型部署到了本地。我们的AI顾问,终于拥有了一个能够进行创造性思考的“灵魂”。但是,一个新的、更微妙的挑战出现了。当我第一次尝试让它帮我分析视频时,它的回答有时很棒,有时却很空泛,像个只会说套话的‘实习生’。我很快意识到,拥有一个强大的LLM大脑,就像拥有了一位才华横溢但性格古怪的顶级艺术家。你不能只是粗暴地对他说‘给我画幅好画’,你必须学会如何与他沟通,如何描述你想要的意境、风格和细节。

2025-07-06 10:43:58 424

原创 【V18.0 - 飞升篇】我把“大模型”装进电脑后,我的AI学会了改稿!——本地部署LLM终极保姆级教程

下一篇,我们将进入一个全新的、充满产品美学和设计巧思的篇章——【V19.0 - 共创篇】我将深入剖析我们那个终极Prompt的设计艺术,并展示如何进一步优化我们的Streamlit界面,让它真正成为一个用起来“赏心悦目”的专业级产品!而本地部署,所有数据都停留在你的硬盘里,绝不离开你的电脑,实现100%的数据安全。几秒钟后,一个由我专属的、本地的AI总监撰写的、包含具体修改意见的报告,出现在了屏幕上!更酷的是,我不想再受制于任何API的费用和网络延迟,我要把这个强大的‘创作大脑’,直接装进我自己的电脑里!

2025-07-06 07:54:43 284

原创 【V17.0 - 实践篇】最佳实践:如何像专业团队一样,组织你的个人AI项目 (保姆级教程)

《构建专业AI项目的工程化实践》摘要 本文系统阐述了构建可维护AI项目的关键工程方法论。首先强调项目结构的重要性,推荐分层目录设计(数据、模型、脚本等模块化分离)。其次提出ETL分层思想,将流程拆解为预处理、特征工程和模型训练的独立步骤,实现关注点分离。在代码组织上倡导模块化编程,每个功能组件应具备可复用性和自测试能力。同时强调版本控制的必要性,规范Git提交信息。最后指出明确环境依赖(requirements.txt)对项目可复现性的关键作用。这些工程实践共同构成了AI项目从实验走向产品的桥梁,是算法实现

2025-07-05 22:39:22 495

原创 【V16.0 - 避坑篇】别走我的弯路!10个Python AI开发大坑,从cuDNN安装失败到模型部署报错的终极避坑指南

在过去的十几篇文章中,我们一路高歌猛进,从数据处理到模型训练,再到用Streamlit构建华丽的UI。我们的AI顾问看起来光鲜亮丽,仿佛一夜成名。但真相是,在这条看似顺畅的道路背后,我掉进过无数个‘坑’。有些坑,让我对着屏幕抓狂到凌晨三点;有些坑,让我一度怀疑自己的智商和人生。今天,我不聊高大上的架构,不聊精妙的算法。我就想和大家掏心掏肺地聊聊这些‘坑’,这些我用无数时间和咖啡因填平的‘天坑’。这份‘血泪史’,希望能帮你省下至少几天宝贵的生命。

2025-07-05 12:18:14 581

原创 【V15.0 - 交互篇】从“卡顿”到“丝滑”:我用Streamlit三个高级技巧,把AI应用的体验拉满了

在上一篇穿上了“钢铁侠战衣”》 中,我们体验了Streamlit的黑魔法,成功地将我们强大的AI内核,从冰冷的命令行,封装成了一个有血有肉的Web应用。它能看,能用,看起来已经很酷了。但当我把这个应用的早期版本发给朋友试用时,我收到了三个尖锐的反馈:‘我只是想拖动一下滑块,为什么整个页面都要重新加载一遍,烦死了!‘你的报告太长了,我只想看结论,能不能把那些技术图表先收起来?‘很酷,但我的外国朋友看不懂中文,能加个英文版吗?这些问题,直击要害。

2025-07-05 09:04:16 722

原创 【V14.0 - 界面篇】告别黑框框:我用Streamlit,3小时给AI穿上了“钢铁侠战衣”

《3小时用Streamlit为AI模型打造可视化界面》文章摘要: 本文介绍了如何利用Streamlit快速为强大的AI内核构建可视化交互界面,实现从命令行工具到产品应用的最后一公里。作者通过3小时实践,用纯Python代码创建了一个"AI创作总监"应用,包含文件上传、表单输入、数据分析仪表盘等完整功能。文章详解了Streamlit的声明式编程特性,对比了与传统Web开发的区别,并展示了关键代码实现,包括页面配置、输入表单构建和预测结果可视化。通过Streamlit,开发者无需前端知识即可

2025-07-04 11:37:42 595

原创 【V13.0 - 战略篇】从“完播率”到“价值网络”:训练能预测商业潜力的AI矩阵

但是,一个新的、更宏大的问题浮现了:一个心脏跳动平稳、能让人从头看到尾的‘健康’视频,就一定能成为一个有商业价值的爆款吗?比如,未来我们发现了一个对“互动”特别重要的特征,我们只需要重新训练“互动模型”即可,而不用触动已经很稳定的“观看模型”。现在,我们面临一个关键的技术抉择:是训练一个巨大的、能同时预测所有这些指标的“超级模型”,还是为每个价值集群分别训练一个“专科模型”?升级我们的app.py,设计一个终极的“数据仪表盘”,并将这三个AI专家的智慧,融合成一份统一的、具有战略高度的诊断报告!

2025-07-04 07:37:51 485

原创 【V12.0 - 时序篇】超越“平均分”:用多目标预测捕捉观众的“心跳曲线”

《AI从"总分预测"升级为"心电图专家":多目标模型精准诊断视频留存曲线》 本文探讨如何将传统AI预测模型从单一的"平均完播率"预测升级为能够绘制完整"观众心电图"的多目标预测系统。作者通过生动的医疗诊断类比,揭示了平均指标的局限性——同样的40%完播率可能对应完全不同的观众流失模式。为解决这一问题,文章详细介绍了如何使用scikit-learn的MultiOutputRegressor包装LightGBM模型,实现对5秒、15

2025-07-03 16:14:03 832

原创 【V11.0 - 调优篇】AI的“闭关修炼”:用Optuna寻找模型的“武学巅峰”

摘要: 本文深入探讨AI模型超参数优化的关键作用与方法。超参数如同AI的“任督二脉”,手动调参效率低下,需借助智能工具。文章对比了网格搜索、随机搜索的局限性,重点介绍基于贝叶斯优化的Optuna框架。Optuna通过动态平衡“探索与利用”,高效寻找最优参数组合,并提供了LightGBM模型的实战代码,封装调优-训练流程,为AI模型实现性能突破。最终目标是通过精准调参,释放模型的120%潜力。

2025-07-03 13:36:31 1125

原创 【V10.0 - 进阶篇】从“随机森林”到“梯度提升”:为我的AI换上F1赛车引擎

本文探讨了从随机森林(RandomForest)升级到LightGBM模型的过程。通过比喻将随机森林比作"经验丰富但慢悠悠的老师傅",而LightGBM则被描述为"F1赛车引擎",作者详细分析了两者的核心差异: 随机森林的"并行无交流"机制存在局限性,无法挖掘深层规律; GBDT的"迭代优化"机制能通过残差学习不断逼近最优解; LightGBM采用直方图算法和Leaf-wise生长策略等优化,显著提升性能。 实验结果表明,在相同

2025-07-03 08:13:39 821

原创 【V9.0 - 缝合篇】AI的“通感”:将视、听、读融为一体,构建多模态特征矩阵

--- 步骤1: 加载预处理的基础数据 ---# 这是我们的手术病人,它包含了原始数据和归一化后的互动指标print(f"信息:手术开始,病人数据已加载 (共{len(df)}条记录)。")# --- 步骤2: 批量AI诊断,生成全新的“器官” ---# 我们将为每一条记录,都生成一套全新的视、听、文案特征print("信息:正在进行多模态AI扫描,生成视、听、文案特征...")

2025-07-02 13:19:18 862

原创 【V8.0 - 语言篇 II】AI的“文案扫描仪”:解剖脚本,量化内容的“灵魂骨架”

在上一篇 《AI的“标题嗅觉”:用向量技术闻出爆款标题的味道》 中,我们成功地赋予了AI“嗅觉”,让它能理解标题的深层语义。“一篇好的文案,就像一栋精心设计的建筑。它有承重墙(核心观点),有漂亮的窗户(金句),有引导人流的楼梯(叙事结构),还有吸引人走进来的大门(开头)。我的AI现在只会看门,看不懂整栋楼的结构。现在,是时候给它一台**‘内容CT机’**,让它能扫描出文案的‘灵魂骨架’了。一、超越“感觉”:为什么文案必须被量化?每个创作者都追求“好文案”。但什么是“好”?这是一个众说纷纭的问题。

2025-07-02 10:53:14 1020 1

原创 【V7.0 - 语言篇 I】AI的“标题嗅觉”:用向量技术闻出爆款标题的味道

本文介绍了如何为AI赋予"语义嗅觉"能力,使其能够超越关键词分析,理解标题背后的深层含义。通过使用Sentence-Transformers工具库和bge-base-zh-v1.5中文模型,仅需三行代码就能将标题转换为768维语义向量。通过计算余弦相似度,AI能准确识别不同标题间的语义关联,即使文字表述完全不同。例如两个摄影教程标题的相似度高达0.8912,而与VLOG类标题的相似度仅0.3456。这种技术让AI真正"闻"出文字的含义,为后续分析视频文案奠定了基础。作

2025-07-01 13:55:13 735

原创 【V6.0 - 听觉篇】当AI学会“听”:用声音特征捕捉视频的“情绪爽点”

系列回顾: 在上一篇 《AI的“火眼金睛”:用OpenCV和SHAP洞察“第一眼缘”》 中,我们成功地让AI拥有了视觉,它已经能像一个严苛的“质检员”一样,评判我视频的画质和动态感。但我的焦虑并没有完全消除。因为我发现,有些画面一般的视频,就因为配上了一首神级BGM,数据居然起飞了!“一个视频,画面是它的‘肉体’,而声音,才是它的‘灵魂’。我的AI现在还是个‘聋子’,它听不到BGM的节拍,也感受不到我旁白里的情绪。是时候,给它进行一次‘听觉神经手术’了!一、创作者的直觉:什么是“踩点”和“情绪烘托”

2025-07-01 12:24:38 675

原创 【V5.0 - 视觉篇】AI的“火眼金睛”:用OpenCV量化“第一眼缘”,并用SHAP验证它的“审美”

系列回顾: 在上一篇 《给AI装上“写轮眼”:用SHAP看穿模型决策的每一个细节》 中,我们成功地为AI装上了“透视眼镜”,看穿了它基于数字决策的内心世界。但一个巨大的问题暴露了:它的世界里,还只有数字。它能理解“时长60秒”,却无法感受画面的震撼。它是一个强大的“盲人数学家”。计算机视觉我们没有必要为每个视频进行切帧,可以针对开头的视频或者中间关键点视频进行切帧,让计算机识别。承上启下: “现在,我们来完成一次真正的‘创世纪’——我们要给它装上眼睛!一、创作者的“玄学”:到底什么是“视觉冲击力”?

2025-07-01 10:41:47 862

原创 【V4.0 - 透视篇】给AI装上“写轮眼”:用SHAP看穿模型决策的每一个细节

系列回顾: 在上一篇 《我“克隆”了自己的创作大脑:训练第一个AI预测模型》 中,我们成功训练出了一个能预测完播率的AI“徒弟”,它甚至还总结出了一套“武功秘籍”。但说实话,我心里还是有点虚。这个AI徒弟虽然考试成绩不错,但它到底是怎么想的?它的决策过程,对我来说还是个“黑箱”。万一它只是碰巧猜对了呢?我需要一种方法,能看穿它的大脑,洞察它每一次决策背后的细节。一、AI的“黑箱”问题:我不敢完全相信它我的AI徒弟能告诉我:“这个视频的预测完播率是35%。

2025-06-30 21:11:43 745

原创 【V3.0 - 造物篇】我“克隆”了自己的创作大脑:训练第一个AI预测模型

print("\n--- AI总结的爆款规律 (决策树版) ---")它给我的“武功秘籍”是这样的:— AI总结的爆款规律 (决策树版)这段“天书”翻译过来就是:铁律一: 3秒跳过率高于64%的视频,基本就“凉了”(class: 1 代表低完播率)。铁律二: 就算开头做得好,如果时长不长,但平均镜头又太长(节奏慢),也容易“凉凉”。这和我们作为创作者的体感是高度一致的!六、是时候检验真理了我的AI徒弟已经出师,并且总结出了一套自己的武功秘籍。

2025-06-30 18:31:01 784

原创 【V2.0 - 侦查篇】数据可视化:我用一行代码,抓到了播放量的“头号杀手”

【摘要】本文通过数据可视化分析,揭示了3秒跳过率与视频完播率之间的显著负相关性。作者利用Python脚本从数据库中提取数据,绘制散点图验证假设,发现用户在前3秒的跳过行为是影响完播表现的关键因素。为进一步量化视频质量,文章还介绍了特征工程方法,创建"平均镜头时长"等衍生指标,并进行数据标准化处理。当前分析已锁定关键影响因素,但作者提出疑问:AI模型能否比人类更准确地预测爆款规律?这为后续研究埋下伏笔。

2025-06-30 11:52:01 858

原创 《我,一个自媒体UP主,决定把“玄学”的爆款规律,做成一个AI》

为什么这条视频突然火了?为什么下一条又沉了?作为一名UP主,我曾无数次在深夜里对着后台数据抓狂。作为一名程序员,我拍了拍桌子,决定不忍了!这个系列,就是我把创作中的“玄学”,用代码和AI硬核破解的全过程。我们将从一个Excel表开始,最终打造出一个能看、能听、能读、甚至能帮你重写标题和文案的“AI军师”。准备好了吗?让我们一起,用技术给创作开个挂!V1.0 - 觉醒篇 我的播放量“薛定谔”了,所以,我给它建了个“数据公墓”一、创作者的“心电图”

2025-06-30 01:14:50 694

原创 【Python GUI终极篇】效率跃升:你的智能媒体管家(图片放大、批量OCR、数据洞察)

开篇:终极形态!告别低效,迎接你的智能媒体管理“超能力”各位 Python 勇士和效率至上者们,久等了!👋经过第一篇的基础骨架搭建和 OCR 启蒙,以及第二篇的视频集成“华丽转身”,再到第三篇的 UI/UX 精雕细琢,我们的智能媒体管理系统已经蜕变成为一个相当成熟的伙伴。但真正的“终极形态”,总是在细节中爆发令人惊叹的“超能力”!你是否曾希望:想看清图片细节,却只能盯着小小的预览图?有上百张图片需要 OCR 识别,却只能一张张手动操作?

2025-06-28 17:44:12 597

原创 【Python GUI实战秘籍】细节制胜:打造更人性化的媒体管理体验(可滚动、图影同显、解除关联)(3/4)

开篇:“能用”到“好用”的飞跃——媒体管理系统的UI/UX炼金术各位 Python 达人和产品经理们,大家好!👋还记得我们在第二篇中,如何让我的媒体管理系统从“静止”到“动态”,实现了 V LC 视频的内置播放吗?那确实是一次激动人心的“华丽转身”!然而,作为追求完美的开发者,我们深知,一个真正优秀的软件,不仅仅是功能的堆砌,更在于那些**“润物细无声”的细节,在于用户体验(UX)的打磨。

2025-06-28 16:48:59 844

原创 媒体库进阶:拥抱视频,从外部调用到VLC内置播放的华丽转身 (2/4)

扫描目录的“智慧升级”:自动识别同名视频当系统再次扫描你的目录时,它变得更聪明了!现在,它不仅会识别图片,还会“环顾四周”,看看有没有和图片同名的视频文件(比如 cover.jpg 旁边有没有 cover.mp4 或 cover.avi)。如果找到了,就会自动将这个视频路径记录在图片对应的 video_path 字段里。Python进度条同步: update_seek_slider 方法会定时(每秒)从 VLC 获取当前播放位置,并更新滑块。

2025-06-28 15:31:08 1037

原创 开篇:当海量素材遇上“选择困难症”——一个Python开发者的破局之路【系列第一篇】

在下一篇文章中,我们将迎来这个项目最激动人心的**“进化”——我们将为系统引入强大的视频管理能力,并尝试将VLC多媒体播放器直接嵌入应用内部**,让你的媒体库真正“动”起来,实现图片与视频的无缝切换与播放!我们渴望的,不只是一个简单的文件管理器,而是一个能够“读懂”图片、告诉我“它火不火”、甚至能帮我“理清头绪”的智能伙伴。它不仅拥有清晰的GUI界面,能智能扫描、组织图片,更通过OCR技术,实现了图片内容识别和关键元数据的自动提取,极大地提升了文件管理的效率和智能化程度!这绝对是本项目的“黑科技”亮点!

2025-06-28 14:16:46 941

原创 第一篇:【开篇】告别低效!为什么我们需要一个“小白”也能用的智能媒体管理神器?

接下来的系列文章,我将手把手带你实现这些功能,从最简单的Tkinter界面开始,逐步迭代,见证这个“小白”也能用的智能媒体管理神器如何从概念变为现实。CSV文件: 简单直接,易于理解和编辑,对于当前的小型项目而言,是快速验证和实现功能的理想选择。第三方接口: 虽然可以避免爬虫的复杂性,但会引入新的问题,例如数据不可控,存在数据泄露风险,一旦接口出现问题,整个系统可能瞬间废弃。效率低下,成品率受阻: 这种重复性的浏览、判断、记录过程,不仅严重降低了我们的工作效率,也直接影响了最终的创作成品率。

2025-06-28 12:15:36 483

原创 哪个编程工具让你的工作效率翻倍

但今天,我要给你们揭露一个“老码农”的心酸(又有点嘚瑟)历程——当传统的编程思维,遇上了那些意想不到的“奇葩”需求,我们是如何“曲线救国”,甚至玩出新花样的!然而,最近一个“小小的”需求,却把我这颗老码农的心,折腾得七上八下,最终不得不“被迫营业”成为自动化工具的“野生代言人”。为了解决一个看起来非常简单的客户问题,我们几乎把市面上能找到的各种自动化工具都“亲测”了一遍,踩了无数的坑,才最终摸索出什么才是真正适合用户、适合我们工作场景的“银弹”。开发难度极低,功能却强大到离谱,而且,它是开源免费的!

2025-06-28 02:04:55 973

原创 一个程序人员对AI的思考

一个偶然的机会,我受邀测试一家公司的AI工具。考虑到身处二线城市,信息可能相对闭塞,我随即联系了一位在本地一家500人规模纯软件开发公司任职的同学,向他打听AI编程的普及情况。如果说三年前有人对我说,随着AI的崛起,程序员将面临失业,我肯定会嗤之以鼻,不屑一顾。潜在的“破坏性”修改: 虽然AI修改代码省心便捷,但它也可能在修正局部问题时,无意中破坏之前已构建好的、正确的代码逻辑。需具备语言底层知识: AI的使用下限在于,使用者必须对语言本身的特性有深入了解,否则一旦出现问题,将束手无策。

2025-06-27 23:58:20 429

原创 如何选择语言工具,提高开发效率

很多程序人员在选择开发桌面小软件的时候,会产生选择焦虑症,本文先介绍如何选择合适语言进行开发提示:以下是本篇文章正文内容,下面案例可供参考最好方式,尽量体现匹配自己熟悉的语言,最好有相对成熟的框架和组件基础上,让Ai将框架搭建好,自己核心逻辑来书写。

2025-06-16 09:07:18 178

【V15.0 - 交互篇】从“卡顿”到“丝滑”:我用Streamlit三个高级技巧,把AI应用的体验拉满了

您是否已经能用Streamlit做出一个“能用”的应用,但总觉得它看起来像个简单的Demo,缺乏专业感和优秀的用户体验?您是否被“每次交互都刷新页面”、“信息杂乱无章”等问题所困扰 本项目源码,是笔者在CSDN发布《我,一个UP主,决定用AI“炼丹”》博客系列中,它不涉及复杂的后台模型训练,而是百分之百聚焦于如何运用Streamlit的高级技巧,将一个普通的数据应用,提升为产品级的交互式仪表盘。 下载这份资源,您将得到一个可以直接学习和改造的、包含了大量UI/UX最佳实践的Streamlit应用范本。 ## 核心功能与技术亮点 这份`app.py`源码,集中展示了三大核心的Streamlit高级交互设计模式 st.form st.expander st.session_state

2025-07-05

【V13.0 - 战略篇】从“完播率”到“价值网络”:训练能预测商业潜力的AI矩阵

训练三个模型来进行全方位,多角度进行预测,包含训练过程中的一系列中间数据

2025-07-04

【V9.0 - 缝合篇】AI的全面感知能力:将视、听、读融为一体,构建多模态特征矩阵

将之前AI看到,听到,读到特征进行特征融合。

2025-07-02

python matplotlib sklearn 数据分析,主要是引入了shap ,可以对于影响因素全面分析

这是一个数据分析工程,利用了matplotlib,以及sklearn 的技术,主要通过特征工程,提取数据,发现播放量高低的核心因素 适合自媒体从业人员,公司等对自己私有数据进行分析 适合掌握python,大数据,机器学习开发者,开发自己的模型

2025-06-30

python matplotlib sklearn 数据分析 分析播放量数据

这是一个数据分析工程,利用了matplotlib,以及sklearn 的技术,主要通过特征工程,提取数据,发现播放量高低的核心因素 适合自媒体从业人员,公司等对自己私有数据进行分析 适合掌握python,大数据,机器学习开发者,开发自己的模型

2025-06-30

【V6.0 - 听觉篇】当AI学会“听”:用声音特征捕捉视频的“情绪爽点”

利用MoviePy与Librosa,强强联合,让计算机听觉可以量化。

2025-07-01

【V5.0 - 视觉篇】AI的“火眼金睛”:用OpenCV量化“第一眼缘”,并用SHAP验证它的“审美”

在之前整合基础上,单独拉出来,对于视频解析代码。

2025-07-01

python ui Python, Tkinter, ttk python-vlc, vlc.Instance, batch ,本地管理图片视频,对关键指标进行分析洞察

这个是智能媒体管理系统阶段性终极版本, 本地管理图片视频,对关键指标进行分析洞察 可以利用ocr 提取图片资源 利用vlc来播放视频 可以对图片,视频数据进行日常管理,可以关联图片,视频 利用excel,对统计后数据进行汇总下载

2025-06-28

软件工程,软件合同 租用,常规软件租用合同

主要是约束租用软件甲方和乙方的行为,包含比较详细定义双方行为,认定双方过错。以及惩罚机制,适合个体或者公司签订合同使用

2025-06-28

文件管理系统设计Python, Tkinter, ttk python-vlc, vlc.Instance, vlc.MediaPlayer 视频播放、文件删除、文件下载、Excel导出、关联视频

希望有一个简单直观的工具来整理自己的图片和视频文件 对视频的关键帧进行截图,并与原视频文件建立关联,方便快速预览和播放。

2025-06-28

桌面应用程序开发+Python, Tkinter, ttk (Themed Tkinter), 智能媒体管理 ,当海量素材遇上选择困难症

初学者: 作为Python GUI(Tkinter)和文件系统操作的实践项目。 普通用户: 希望有一个简单直观的工具来整理自己的图片和视频文件。 内容创作者/策展人: 需要对媒体文件进行分类、打标签、记录信息,并进行批量操作。 数据整理者: 利用OCR功能从图片中快速提取信息。 使用场景: 整理个人/专业图片和视频库: 将散落在硬盘各处的图片和视频文件归类、标记。 视频截图与原视频关联: 对视频的关键帧进行截图,并与原视频文件建立关联,方便快速预览和播放。 内容审核与筛选: 标记图片/视频的审核状态(如“已检查”、“批准”、“拒绝”),以便进行后续处理。 收集素材管理: 对收集到的图片或视频素材进行元数据管理和快速预览。 离线媒体库管理: 在没有网络连接或云存储需求时,管理本地存储的媒体文件。 学习与开发: 作为学习Tkinter、PIL、VLC集成、OCR等技术的案例。

2025-06-28

Web 服务与 API 集成 (Web Services & API Integration)实现天气预报

该 Python 脚本首先从一个 PEM 格式的私钥文件 (ed25519-private.pem) 中加载 Ed25519 私钥。接着,它利用此私钥和预设的 payload(包含订阅者 ID、签发和过期时间)及 headers(包含密钥 ID),通过 EdDSA 算法生成一个 JWT。生成的 JWT 被用作 HTTP 请求头中的 Bearer Token,向和风天气 API (https://kf59fb8jp2.re.qweatherapi.com/v7/grid-weather/24h) 发送请求,以获取指定经纬度(113.84, 34.54)的 24 小时逐小时天气预报。最后,脚本解析 API 返回的 JSON 数据,并使用一个预定义的 field_map 字典将英文键翻译成中文,同时格式化时间字段,最终以中文友好的 JSON 格式打印出天气预报信息。私钥需要开发者自己生成自己保留。生成文档可以参照和风天气文档

2025-06-28

前端 +canvas+js+用来演示,报警

页面加载时,无数彩色粒子在画布上随机飘动。当用户点击按钮时,这些粒子会受到引力,汇聚成 "Hello World" 的字形,同时语音读出这句话。 实现步骤: 在内存中(一个不可见的 Canvas)绘制出 "Hello World" 文字。 使用 getImageData() 获取文字的像素信息。 遍历像素数据,记录下所有构成文字的像素点坐标。 创建大量的粒子对象,每个粒子都有一个随机的初始位置和颜色,以及一个从上一步记录的像素点中随机分配的目标位置。 创建一个动画循环,在每一帧中,让每个粒子向其目标位置移动一小段距离(缓动效果)。 点击按钮时,启动动画并触发语音。 适合特效演示,大屏幕报警,应急指挥平台 注意:需要现代浏览器,IE6之后可能无法使用

2025-06-27

Vue整合百度地图插件

真是项目的一小块案例,属于基础页面,包含Vue的基本用法,Vuex,element以及和 后台json交互

2019-02-22

股票k线和分时图已经指标

完全vc++的项目,其中我做了一些改造,以前是odbc,我修改为直接和mysql连接,同时做出了k线和分时图,可以参考一下

2019-02-22

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除