经验分布函数的期望值公式解析

E[F^n(x)]=E[1n∑i=1n1{ Xi≤x}]=1nnFX(x)=FX(x) E[\hat{F}_n(x)] = E\left[\frac{1}{n} \sum_{i=1}^{n} \mathbf{1}\{X_i \leq x\}\right] = \frac{1}{n} n F_X(x) = F_X(x) E[F^n(x)]=E[n1i=1n1{ Xix}]=n1nFX(x)=FX(x)

这个公式描述了经验分布函数(Empirical Distribution Function,简称EDF)的期望值。我们来逐步解析这个公式,以便更好地理解它:

  1. 定义经验分布函数F^n(x)\hat{F}_n(x)F^n(x) 是经验分布函数,定义为样本中不超过 xxx 的观测值的比例。具体的公式是
    F^n(x)=1n∑i=1n1{ Xi≤x} \hat{F}_n(x) = \frac{1}{n} \sum_{i=1}^{n} \mathbf{1}\{X_i \leq x\} F^n(x)=n1i=1n1{ Xix}

其中, 1{ Xi≤x}\mathbf{1}\{X_i \leq x\}1{ Xix} 是一个指示函数,当 Xi≤xX_i \leq xXix 时取值为 1,否则为 0。

  1. 计算期望:要求 F^n(x)\hat{F}_n(x)F^n(
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值