E[F^n(x)]=E[1n∑i=1n1{ Xi≤x}]=1nnFX(x)=FX(x) E[\hat{F}_n(x)] = E\left[\frac{1}{n} \sum_{i=1}^{n} \mathbf{1}\{X_i \leq x\}\right] = \frac{1}{n} n F_X(x) = F_X(x) E[F^n(x)]=E[n1i=1∑n1{ Xi≤x}]=n1nFX(x)=FX(x)
这个公式描述了经验分布函数(Empirical Distribution Function,简称EDF)的期望值。我们来逐步解析这个公式,以便更好地理解它:
- 定义经验分布函数: F^n(x)\hat{F}_n(x)F^n(x) 是经验分布函数,定义为样本中不超过 xxx 的观测值的比例。具体的公式是
F^n(x)=1n∑i=1n1{ Xi≤x} \hat{F}_n(x) = \frac{1}{n} \sum_{i=1}^{n} \mathbf{1}\{X_i \leq x\} F^n(x)=n1i=1∑n1{ Xi≤x}
其中, 1{ Xi≤x}\mathbf{1}\{X_i \leq x\}1{ Xi≤x} 是一个指示函数,当 Xi≤xX_i \leq xXi≤x 时取值为 1,否则为 0。
- 计算期望:要求 F^n(x)\hat{F}_n(x)F^n(