【Python笔记】Sparksql from_json

本文指导如何修复不完整JSON格式,使用`from_json`函数将`Spark DataFrame`转换。作者分享了缺失的{}

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

I am trying to use from_json() to convert the JSON to a DataFrame.

import org.apache.spark.sql.functions._

val schemaExample2 = new StructType()
                              .add("", ArrayType(new StructType()
                                                          .add("FirstName", StringType)
                                                          .add("Surname", StringType)
                                                )
                                  )

val dfExample2= spark.sql("""select "[{ \"FirstName\":\"Johnny\", \"Surname\":\"Boy\" }, { \"FirstName\":\"Franky\", \"Surname\":\"Man\" }" as theJson""")

val dfICanWorkWith = dfExample2.select(from_json($"theJson", schemaExample2))

dfICanWorkWith.collect()

// Result \\
res22: Array[org.apache.spark.sql.Row] = Array([null])

The problem is that you don’t have a fully qualified json. Your json is missing a couple of things:

  • First you are missing the surrounding {} in which the json is done
  • Second you are missing the variable value (you set it as "" but did not add it)
  • Lastly you are missing the closing ]

Try replacing it with:

val dfExample2= spark.sql("""
select "{\"\":[{ \"FirstName\":\"Johnny\", \"Surname\":\"Boy\" }, { \"FirstName\":\"Franky\", \"Surname\":\"Man\" }]}" as theJson
""")

and you will get:

scala> dfICanWorkWith.collect()
res12: Array[org.apache.spark.sql.Row] = Array([[WrappedArray([Johnny,Boy], [Franky,Man])]])

Reference: Spark from_json - StructType and ArrayType

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值