haar 级联分类器是一种有效的对象检测方法。这是一种基于机器学习的方法。为了训练用于猫脸检测的haar级联分类器,该算法最初需要大量的正面图像(有猫脸的图像)和负面图像(没有猫脸的图像)。分类器是从这些正图像和负图像训练的。然后,它用于检测其他图像中的猫脸。
我们可以使用已经训练好的haar级联来进行微笑检测。对于输入图像中的微笑检测,我们需要两个haar级联,一个用于面部检测,另一个用于微笑检测。我们将使用haarcascade_frontalcatface.xml在图像中进行猫脸检测。
如何下载哈卡斯卡德?
您可以在GitHub网站地址以下找到不同的haarcascades -
https://github.com/opencv/opencv/tree/master/data/haarcascades
要下载用于猫脸检测的haar级联,请单击haarcascade_frontalcatface.xml文件。以原始格式打开它,右键单击并保存。
步骤
要检测图像中的猫脸并在它们周围绘制边界框,您可以按照以下步骤操作 -
-
导入所需的库。在以下所有示例中,所需的 Python 库是 OpenCV。确保您已经安装了它。
-
使用 cv2.imread() 读取输入图像。指定完整的图像路径。将输入图像转换为灰度。
-
启动 Haar 级联分类器对象 cat_cascade = cv2。CascadeClassifier() 用于猫脸检测。