人工智能入门课程学习(10)——聚类算法

1.聚类算法简介

在这里插入图片描述
使用不同的聚类准则,产生的聚类结果不同。

1.1 聚类算法的一些具体应用

  • 用户画像,广告推荐,Data Segmentation,搜索引擎的流量推荐,恶意流量识别

  • 基于位置信息的商业推送,新闻聚类,筛选排序

  • 图像分割,降维,识别;离群点检测;信用卡异常消费;发掘相同功能的基因片段

1.2 聚类算法的概念

聚类算法:

一种典型的无监督学习算法,主要用于将相似的样本自动归到一个类别中。

在聚类算法中根据样本之间的相似性,将样本划分到不同的类别中,对于不同的相似度计算方法,会得到不同的聚类结果,常用的相似度计算方法有欧式距离法。

1.3 与分类算法的最大区别

聚类算法是无监督的学习算法,而分类算法属于监督的学习算法。

2.使用sklearn中的api入门分类算法

2.1 api

  • sklearn.cluster.KMeans(n_clusters=8)
    • 参数:
      • n_clusters:开始的聚类中心数量
        - 整型,缺省值=8,生成的聚类数,即产生的质心(centroids)数。
    • 方法:
      • estimator.fit(x)
      • estimator.predict(x)
      • estimator.fit_predict(x)
        - 计算聚类中心并预测每个样本属于哪个类别,相当于先调用fit(x),然后再调用predict(x)

2.2 分类案例

在这里插入图片描述

3. 聚类算法实现流程

k-means其实包含两层内容:

​ K : 初始中心点个数(计划聚类数)

​ means:求中心点到其他数据点距离的平均值

3.1 k-means聚类步骤

  • 1、随机设置K个特征空间内的点作为初始的聚类中心
  • 2、对于其他每个点计算到K个中心的距离,未知的点选择最近的一个聚类中心点作为标记类别
  • 3、接着对
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值