文章目录
1.聚类算法简介
使用不同的聚类准则,产生的聚类结果不同。
1.1 聚类算法的一些具体应用
-
用户画像,广告推荐,Data Segmentation,搜索引擎的流量推荐,恶意流量识别
-
基于位置信息的商业推送,新闻聚类,筛选排序
-
图像分割,降维,识别;离群点检测;信用卡异常消费;发掘相同功能的基因片段
1.2 聚类算法的概念
聚类算法:
一种典型的无监督学习算法,主要用于将相似的样本自动归到一个类别中。
在聚类算法中根据样本之间的相似性,将样本划分到不同的类别中,对于不同的相似度计算方法,会得到不同的聚类结果,常用的相似度计算方法有欧式距离法。
1.3 与分类算法的最大区别
聚类算法是无监督的学习算法,而分类算法属于监督的学习算法。
2.使用sklearn中的api入门分类算法
2.1 api
- sklearn.cluster.KMeans(n_clusters=8)
- 参数:
- n_clusters:开始的聚类中心数量
- 整型,缺省值=8,生成的聚类数,即产生的质心(centroids)数。
- n_clusters:开始的聚类中心数量
- 方法:
- estimator.fit(x)
- estimator.predict(x)
- estimator.fit_predict(x)
- 计算聚类中心并预测每个样本属于哪个类别,相当于先调用fit(x),然后再调用predict(x)
- 参数:
2.2 分类案例
3. 聚类算法实现流程
k-means其实包含两层内容:
K : 初始中心点个数(计划聚类数)
means:求中心点到其他数据点距离的平均值
3.1 k-means聚类步骤
- 1、随机设置K个特征空间内的点作为初始的聚类中心
- 2、对于其他每个点计算到K个中心的距离,未知的点选择最近的一个聚类中心点作为标记类别
- 3、接着对