the structure of paper

该博客围绕源代码语言模型展开,介绍了编译过程,包括词法分析、语法分析和抽象语法树。阐述了基于代码的显式(n - gram)和隐式(NN)语言模型,提出DT + 模型并介绍其算法及cache应用。通过实验对比三种模型,用MAP指标评估,最后对结果进行讨论。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

老师,我想讨论一下论文框架,我该什么的思路来写文章?下面是我的初步框架。第二部分和嗲三部分我已经写了一部分。

题目 build language model for source code

1.绪论

语言模型取得巨大成功,并开始对代码进行建模,用得最多是以n-gram为典型的显式模型和以NN为基础的隐式模型。显示的基于统计,捕获局部性,丢失结构信息和语义信息。隐式的提取的特征在隐式空间,捕获的特性带有盲目性。于是有了我们的模型。

2. 理论基础

2.1编译过程

2.1.1词法分析

2.1.2 语法分析

2.1.3抽象语法树

2.2 基于代码的语言模型

2.2.1 显式模型(n-gram)

2.2.2 隐式模型(NN)

2.3 决策树

3. DT+模型

在这里插入图片描述

3.1GenRule

3.2 DT+算法

在这里插入图片描述
在这里插入图片描述

3.3 cache的应用

捕获位置信息
在这里插入图片描述

3.4 DT+cache

4. 实验

4.1数据集的介绍

不是DSL

4.2 实验步骤,参数的设置

4.3 三种模型对比

显式模型,隐式模型和我们的模型
指标:MAP

4.4 讨论

对实验结果进行讨论

5.结论与展望

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值