MATLAB算法实战应用案例精讲-【图像处理】三维重建(附MATLAB和python代码实现)

目录

前言

几个高频面试题目

1.体素与点云的比较

几个相关概念

彩色图像与深度图像

点云数据

算法原理

什么是三维重建?

1.基于视觉几何的传统三维重建

2.基于深度学习的三维重建

三维重建发展历程

三维重建技术

1、被动式三维重建技术

2、主动式三维重建技术

三维图像重构

坐标系

坐标系转换

图像的三维重建流程 

常用的开源框架

算法步骤

(1) 图像获取

(2)摄像机标定

​编辑

(3)特征提取

(4)立体匹配

(5)三维重建

三维重建方法

传统三维重建方法

1.RGBD

2.MVS多帧图像重建

基于深度学习的三维重建

mesh重建

深度图重建MVSNet 

三维重建常见的几个算法

纯格雷码三维重建

应用场景

医学领域的三维重建技术

代码实现

MATLAB

基于切片的三维重建MATLAB仿真

基于正弦结构光的三维重建(MATLAB)

医学三维重建(MPR)

基于Matlab的双目视觉三维重建技术 

python

三维重建算法Structure from Motion(Sfm)

双目三维重建系统(双目标定+立体校正+双目测距+点云显示)


前言

三维重建的英文术语名称是3D Reconstruction.
三维重建是指对三维物体建立适合计算机表示和处理的数学模型,是在计算机环境下对其进行处理、操作和分析其性质的基础,也是在计算机中建立表达客观世界的虚拟现实的关键技术。
在计算机视觉中, 三维重建是指根据单视图或者多视图的图像重建三维信息的过程. 由于单视图的信息不完全,因此三维重建需要利用经验知识. 而多视图的三维重建(类似人的双目定位)相对比较容易, 其方法是先对摄像机进行标定, 即计算出摄像机的图象坐标系与世界坐标系的关系.然后利用多个二维图象中的信息重建出三维信息。
物体三维重建是计算机辅助几何设计(CAGD)、计算机图形学(CG)、计算机动画、计算机视觉、医学图像处理、科学计算和虚拟现实、数字媒体创作等领域的共性科学问题和核心技术。在计算机内生成物体三维表示主要有两类方法。一类是使用几何建模软件通过人机交互生成人为控制下的物体三维几何模型,另一类是通过一定的手段获取真实物体的几何形状。前者实现技术已经十分成熟,现有若干软件支持,比如:3DMAX、Maya、AutoCAD、UG等等,它们一般使用具有数学表达式的曲线曲面表示几何形状。后者一般称为三维重建过程,三维重建是指利用二维投影恢复物体三维信息(形状等)的数学过程和计算机技术,包括数据获取、预处理、点云拼接和特征分析等步骤。

主要涉及技术包括:多视图立体几何、深度图估计、点云处理、网格重建和优化、纹理

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

林聪木

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值