MATLAB算法实战应用案例精讲-【大模型】LLM算法(补充篇)

本文介绍了大型语言模型(LLM)的发展,包括LLM的关键技术,如缩放、训练策略和多模态任务的应用。通过mPLUG-Owl、LLaVA、Mini-GPT4等实例,展示了如何利用LLM进行多模态任务,如视觉指令理解和图像生成。同时,提出了大模型面临的挑战,如实践验证、模型对齐和安全隐患。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

目录

前言

算法原理 

LM研究发展阶段

LLM的关键技术

如何利用LLM做多模态任务?

mPLUG-Owl

LLaVA

Mini-GPT4

Frozen

Flamingo

BLIP2

PICA

MAGIC

MAGIC

Visual ChatGPT

大模型LLM-微调

ChatGLM-6B模型微调

Freeze方法

PT方法

Lora方法

三元组抽取实验结果

文本生成

目前大模型主要面临的挑战


 

前言

大型语言模型,也称为“大规模语言模型”,是指旨在处理和理解人类语言的人工智能(AI)模型。 这些模型是更广泛的自然语言处理 (NLP) 领域的一部分,能够执行各种与语言相关的任务,例如文本生成、翻译、情感分析、语言理解、问答等。

最突出、最知名的大语言模型是OpenAI的GPT(Generative Pre-trained Transformer)系列。 GPT-3 是“Generative Pre-trained Transformer 3”的缩写,是迄今为止最先进的语言模型之一,拥有数量惊人的参数(1750 亿)。 这些参数代表模型在预训练阶段获得的“知识”或“经验”,在预训练阶段模型会接触到来自互联网的大量文本数据。

算法原理 

LM研究发展阶段

LM旨在对单词序列的生成可能性进行建模,从而预测未来(或缺失)token的概率。

LM的研究可以分为四个主要的发展阶段:

-统计语言模型(SLM)

SLM基于20实际90年代兴起的统计学习方法开发。基本思想是建立基于马尔可夫假设的单词预测模型

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

林聪木

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值