MATLAB算法实战应用案例精讲-【自动驾驶】栅格地图(附python、MATLAB和C++代码实现)

本文详细介绍了栅格地图在自动驾驶中的应用,对比了点云地图和栅格地图的优劣,讲解了如何通过激光数据构建栅格地图,包括二维、三维占据栅格地图和高程栅格地图。此外,文章还探讨了栅格地图的改进,如八叉树地图和Voxel hashing,并提供了Python、MATLAB和C++的代码实现。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

目录

前言

几个高频面试题目

点云地图和栅格地图的优劣对比

点云地图

栅格地图

2.1二维占据栅格地图

2.2三维占据栅格地图

2.3 维高程栅格地图

栅格地图和矢量地图的图例有什么区别

栅格图

矢量图   

算法原理

地图分类

栅格地图分类

如何通过激光数据构建栅格地图?

算法输入数据

算法步骤

基于gmapping的栅格地图构建

gmapping的使用

栅格地图的改进

八叉树地图

Voxel hashing

优缺点

优点

缺点:

应用场景

代码实现

Python 

 MATLAB

C++


 

前言

光栅图也叫做位图、点阵图、像素图,简单的说,就是最小单位由像素构成的图,只有点的信息,缩放时会失真。每个像素有自己的颜色,类似电脑里的图片都是像素图,你把它放很大就会看到点变成小色块了。
栅是格栅,就是纵横成排的小格,小格小到极至,就是点了。对于一个图像,人可以一眼就看明白。但是计算机要记录下来就要把这个图像分成一个个小格也就是点阵,点格栅分得越细,图像也就记录得越有细节。
光栅图也叫做位图、点阵图、像素图,简单的说,就是最小单位由像素构成的图‘只有点的信息。缩放时会失真。每个像素有自己的颜色,类似电脑里的图片都是像素图,你把它放很大就会看到点变成小色块了。这种格式的图适合存储图形不规则,而且颜色丰富没有规律的图,比如照相、扫描。 BMP,GIF,JPG等等.格式的文件。重现时,看图软件就根据文件里的点阵绘到屏幕上.或都打印出来。
栅格地图是一种基于网格的地图表示方法,其中地图区域被划分为均匀的网格单元,并为每个网格单元分配特定的属性信息。每个网格单元可以表示不同的地理特征、地物类型、高度、障碍物等信息。栅格地图常用于自动驾驶、机器人导航、游戏开发、地理信息系统等领域。

几个高频面试题目

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

林聪木

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值