MATLAB算法实战应用案例精讲-【数模应用】漫谈机器学习(二)

目录

几个高频面试题目

机器学习中的模型评价、模型选择与算法选择 

基本的模型评估项和技术

Bootstrapping 和不确定性

交叉验证和超参数优化

机器学习的发展历程

知识储备

机器学习常用术语

算法原理 

1. 什么是机器学习?

机器学习和人工智能的关系

机器学习的工作方式

机器学习所处的位置

机器学习的实际应用

机器学习的算法

机器学习的组成

学习 V.S. 智能

机器学习世界的版图

分类算法

算法应用 


几个高频面试题目

机器学习中的模型评价、模型选择与算法选择 

基本的模型评估项和技术

机器学习已经成为我们生活的中心,无论是作为消费者、客户、研究者还是从业人员。无论将预测建模技术应用到研究还是商业问题,我认为其共同点是:做出足够好的预测。用模型拟合训练数据是一回事,但我们如何了解模型的泛化能力?我们如何确定模型是否只是简单地记忆训练数据,无法对未见过的样本做出好的预测?还有,我们如何选择好的模型呢?也许还有更好的算法可以处理眼前的问题呢?

1.1 性能评估:泛化性能 vs. 模型选择

让我们考虑这个问题:「如何

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

林聪木

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值